Preview

Nuclear Physics and Engineering

Advanced search

CALCULATION OF GLOW DISCHARGE PARAMETERS IN A SUPERSONIC AXISYMMETRIC HELIUM FLOW

https://doi.org/10.56304/S2079562924060435

EDN: KNLQXQ

Abstract

The parameters of a glow discharge in helium with a nonuniform distribution of the density of neutral particles along the discharge gap have been calculated for a one-dimensional axisymmetric geometry. This formulation of the problem corresponds to the condition of generating a discharge between a Laval nozzle with a central body, which is the anode, and a ring cathode coaxial with the central body at low pressures. In this case, a supersonic gas flow is generated through the Laval nozzle, which creates an increased gas pressure near the central body (anode), and high vacuum is maintained outside the supersonic jet. Thus, the internal structure of this discharge will depend on the density of gas particles in different regions of the interelectrode space. It has been established that this method of organizing a glow discharge in a supersonic gas flow makes it possible to control the spatial distribution of the internal characteristics of the discharge.

About the Authors

B. A. Timerkaev
Kazan National Research Technical University named after A.N. Tupolev
Russian Federation


O. A. Petrova
Kazan National Research Technical University named after A.N. Tupolev
Russian Federation


A. I. Sayfutdinov
Kazan National Research Technical University named after A.N. Tupolev
Russian Federation


D. I. Israfilov
Kazan Federal University
Russian Federation


References

1. Райзер Ю.П. Физика газового разряда. 2009. Долгопрудный: Интеллект.

2. Кудрявцев А.А., Смирнов А.С., Цендин Л.Д. Физика тлеющего разряда. 2010. СПб: Лань.

3. Surzhikov S.T. Computational Physics of Electric Discharges in Gas Flows. 2012. Berlin, Boston: De Gruyter. https://doi.org/10.1515/9783110270419

4. Saifutdinov A. I. // Plasma Sources Sci. Techn. 2022. V. 31 (9). P. 094008.

5. Korolev Yu.D., Koval N.N. // J. Phys. D. 2018. V. 51 (32). p. 323001.

6. Lyu X., Yuan Ch., Avtaeva S., Kudryavtsev A., Yao J., Zhou Zh., Wang X. // Plasma Phys. Reports. 2021. V. 47 (4). P. 369–376.

7. Yuan C. et al. // Plasma Sources Sci. Technol. 2019. V. 28 (6). P. 067001.

8. Yuan C. et al. // IEEE Trans. Plasma Sci. 2017. V. 45 (12). P. 3110–3113.

9. Saifutdinov A.I., Sysoev S.S. // Plasma Sources Sci. Technol. 2023. V. 32 (11). P. 114001.

10. Zhou C. et al. // Plasma Sources Sci. Technol. 2021. V. 30 (11). P. 117001.

11. Иванов Ю.Ф., Коваль Н.Н., Петрикова Е.А., Крысина О.В., Шугуров В.В., Ахмадеев Ю.Х., Лопатин И.В., Тересов А.Д., Толкачев О.С. Наукоемкие технологии в проектах РНФ. Сибирь. Под ред. С.Г. Псахье, Ю.П. Шаркеева. 2017. Томск: Изд-во НТЛ. Гл. 1. С. 5–35.

12. Шибков М., Корнев К.Н., Логунов А.А., Нестеренко Ю.К. // Физика плазмы. 2022. Т. 48 (7). С. 648–656.

13. Bityurin V.A., Bocharov A.N., Popov N.A. // Fluid Dynamics. 2008. V. 43. P. 642–653. https://doi.org/10.1134/S0015462808040170

14. Kuzenov V.V., Ryzhkov S.V. // Symmetry. 2021. V. 13 (6). P. 927.

15. Kuzenov V.V., Ryzhkov S.V., Varaksin A.Yu. // Appl. Sci. 2022. V. 12. P. 3610.

16. Kuzenov V.V., Ryzhkov S.V. // Fusion Sci. Technol. 2023. V. 79. P. 399–406.

17. Kuzenov V.V., Ryzhkov S.V., Varaksin A.Yu. // Aerospace. 2023. V. 10. P. 662.

18. Kuzenov V.V., Ryzhkov S.V., Varaksin A.Yu. // Appl. Sci. 2023. V. 13 (9). P. 5538.

19. Тимеркаев Б.А., Галеев И.Г., Гончаров В.Е., Торопов В.Г., Фасхутдинов А.Х. // Теплоф. выс. темп. 1990. Т. 28 (5). С. 843–846.

20. Тимеркаев Б.А., Галеев И.Г., Гончаров В.Е., Торопов В.Г., Фасхутдинов А.Х. // Теплоф. выс. темп. 1992. Т. 30 (4). С. 439–444.

21. Timerkaev B.A., Zalyaliev B.R // High Temp. 2014. V. 52 (4). P. 471–474.

22. Saifutdinov A.I., Timerkaev B.A., Zalyaliev B.R. // High Temp. 2016. V. 54. P. 632–638.

23. Timerkaev B.A., Shamsutdinov R.S. // J. Phys.: Conf. Ser. 2020. V. 1588 (1). 012061.

24. Shamsutdinov R.S., Timerkaev B.A., Petrova O.A., Saifutdinov A.I. // Phys. Plasmas. 2022. V. 29 (12). P. 120702.

25. Kutasi K., Hartmann P., Donkó Z. // J. Phys. D. 2001. V. 34 (23). P. 3368.

26. Saifutdinov A.I., Sysoev S.S. // Plasma Phys. Rep. 2023. V. 49 (6). P. 772–785.

27. Saifutdinov A.I., Sysoev S.S. // Plasma Sources Sci. Technol. 2023. V. 32 (11). P. 114001.

28. Богданов Е.А. и др. // Журн. техн. физики. 2010. Т. 80 (10). С. 41–53.

29. Кузенов В.В., Рыжков С.В. // Телофиз. выс. темп. 2021. Т. 59 (4). С. 492–501.

30. Kuzenov V.V., Ryzhkov S.V. // Mathematics. 2022. V. 10. p. 2130.

31. Bulychev N.A., Kolesnik S.A. // IOP Conf. Proc. 2022. V. 2231. P. 012012

32. Alves L.L. et al. // J. Phys. D. 2013. V. 46 (33). P. 334002.


Review

For citations:


Timerkaev B.A., Petrova O.A., Sayfutdinov A.I., Israfilov D.I. CALCULATION OF GLOW DISCHARGE PARAMETERS IN A SUPERSONIC AXISYMMETRIC HELIUM FLOW. Nuclear Physics and Engineering. 2024;15(6):607-612. (In Russ.) https://doi.org/10.56304/S2079562924060435. EDN: KNLQXQ

Views: 18


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)