REGULARITIES OF THE STRUCTURE FORMATION OF RAPIDLY QUENCHED POWDER OF THE HEAT-RESISTANT TI-BASED ALLOY PRODUCED BY PREP-METHOD
https://doi.org/10.56304/S2079562924060381
EDN: TZGLRH
Abstract
A multiscale study of the structure of spherical particles (granules) of rapidly quenched powder of a heat-resistant (α + β) titanium-based alloy obtained by the PREP method, which has been subsequently used for the manufacture of products using PM HIP technology, has been carried out. Metallography LM, SEM, EDX, OIM methods are used to study the structure of granules of different sizes. The influence of the granule size and vacuum heat treatment at temperatures in the fields of (α + β) and β phases on the regularities of the formation of the microstructure of granules has been revealed. The dendrite microstructure of grains of the metastable β phase has been found in the particles (granules) of the original rapidly quenched PREP powder. Dendrite segregation of alloying elements is clearly revealed in larger particles, for example, for Mo. In smaller particles, the formation of a more highly dispersed structure has been observed. The controlling effect of granule size decreasing on the reduction of dendrite structure size parameter (SDAS) has been determined. Schematic TTT diagrams of phase transformations in the studied alloy, including crystallization, martensitic transformation, and normal diffusion transformation β → (α + β), have been constructed.
About the Author
A. V ShulgaRussian Federation
References
1. Leyens Ch., Peters M. (Eds.) Titanium and Titanium Alloys. Fundamentals and Applications. 2003. Weinheim: Wiley-Vch Verlag. https://doi.org/10.1002/3527602119
2. Guo R.P., Xu L., Wu J., Yang R., Zong B.Y. // Sci. Eng. A. 2015. V. 639. P. 327. https://doi.org/10.1007/s11837-019-03612-7
3. Shulga A.V. An Investigation of the Microstructure and Mechanical Properties of the PM HIP Compacts of the High Temperature Ti-Based Alloy Fabricated Using the Rapidly Quenched Powder Produced by PREPTechnique. Proc. Euro PM 2020: European Conference on Powder Metallurgy. 2020.
4. Zhang K., Mei J., Wain N., Wu X. // Metall. Mater. Trans. A. 2020. V. 41. P. 1033. https://doi.org/10.1007/s11661-009-0149-y
5. Hidalgo A.A., Frykholm H.R., Ebel T., Pyczak F. // Adv. Eng. Mater. 2017. V. 19 (6). P. 1600743. https://doi.org/10.1002/adem.201600743
6. Paramore J.D., Fang Z.Z., Sun P., Koopman M., Chandran K.S.R., Dunstan M. // Scr. Mater. 2015. V. 107. P. 103. https://doi.org/10.1016/j.scriptamat.2015.05.032
7. Liu L.H., Yang C., Kang L.M., Long Y., Xiao Z.Y., Li P.J., Zhang L.C. // Mater. Sci. Engin. A. 2016. V. 650. P. 171. https://doi.org/10.1016/j.msea.2015.10.048
8. Carroll B.E., Palmer T.A., Beese A.M. // Acta Mater. 2015. V. 87. P. 309. https://doi.org/10.1016/j.actamat.2014.12.054
9. Zhang S.Z., Xu H.Z., Li G.P., Liu Y.Y., Yang R. // Mater. Sci. Engin. A. 2005. V. 408. P. 290. https://doi.org/10.1016/j.msea.2005.08.057
10. Fukuda T., Kawamura T., Kakeshita T. // J. Alloys Compd. 2016. V. 683. P. 481. https://doi.org/10.1016/j.jallcom.2016.05.120
11. Davids W., Chen H., Nomoto K., Wang H., Babu S., Primig S., Liao X., Breen A., Ringer S. // Acta Mater. 2021. V. 215. P.117131. https://doi.org/10.1016/j.actamat.2021.117131
12. Demakov S., Kylosova I., Stepanov S., Bönisch M. // Acta Cryst. B. 2021. V. 77. P. 749. https://doi.org/10.1107/S2052520621007976
13. Barriobero-Vila P., Oliveira V.B., Schwarz S., Buslaps T., Requena G. // Acta Mater. 2017. V. 135. P. 132. https://doi.org/10.1016/j.actamat.2017.06.018
14. Guo R.-P., Xu L., Zong B.Y., Yang R. // Acta Metall. Sin. (Engl. Lett.). 2017. V. 30. P. 735. https://doi.org/10.1007/s40195-017-0540-4
15. Sun P., Fang Z., Zhang Y., Xia Y. // J. Minerals Met. Mater. Soc. 2017. V. 69. P. 1853. https://doi.org/10.1007/s11837-017-2513-5
16. Mitchell A., Kawakami A., Cockcroft S.L. // High Temp. Mater. Proces. 2007. V. 26 (1). P. 59. https://doi.org/10.1515/HTMP.2007.26.1.59
17. Kurdiumov G.V. // Dokl. Akad. Nauk. SSSR. 1948. V. 60. P. 1543.
18. Stefanescu D.M., Ruxanda R. Solidification Structures of Titanium Alloys. Metallography and Microstructures. 2004. V. 9. P. 116–126. https://doi.org/10.31399/asm.hb.v09.a0003728
19. Kelkar K., Mitchell A. // MATEC Web Conf. 2020. V. 321. P. 10001. https://doi.org/10.1051/matecconf/202032110001
20. Elshaer R.N., Ibrahim K.M. // J. Mater. Engin. Perf. 2023. V. 32 (17). P. 7831. https://doi.org/10.1007/s11665-022-07654-y
21. Ibrahim K., Hussien A., Abdelkawy M. // Trans. Nonferrous Met. Soc. China. 2013. V. 23. P. 1863. https://doi.org/10.1016/S1003-6326(13)62671-0
22. Elshaer R.N., El-Deeb M.S., Mohamed S.S., Ibrahim K.M. // Int. J. Metalcast. 2022. V. 16 (2). P. 723. https://doi.org/10.1007/s40962-021-00622-7
Review
For citations:
Shulga A.V. REGULARITIES OF THE STRUCTURE FORMATION OF RAPIDLY QUENCHED POWDER OF THE HEAT-RESISTANT TI-BASED ALLOY PRODUCED BY PREP-METHOD. Nuclear Physics and Engineering. 2024;15(6):552-566. (In Russ.) https://doi.org/10.56304/S2079562924060381. EDN: TZGLRH