Preview

Nuclear Physics and Engineering

Advanced search

STUDY OF THE INFLUENCE OF ELEMENTAL COMPOSITION ON SPECIFIC ELECTRICAL RESISTANCE OF TI–B–C COATINGS OBTAINED BY MAGNETRON SPUTTERING METHOD

https://doi.org/10.56304/S2079562924060186

EDN: ASVDBW

Abstract

Ti–B–C coatings of various compositions have been obtained by magnetron sputtering using a TiB2–TiC heterophase target and have been deposited on a Si(111) substrate. The studies have been carried out using glow discharge optical emission spectroscopy, X-ray diffraction and scanning electron microscopy. The electrical resistivity has been measured using the four-probe method. The coatings had a dense, low-defect structure based on the hexagonal TiB2 phase and have been characterized by a uniform distribution of elements throughout the thickness. It has been established that the electrical resistivity decreases from 314 to 249 μΩ cm with an increase in the titanium content in coatings from 27 to 42 at %.

About the Authors

Ph. V. Kiryukhantsev-Korneev
National University of Science and Technology MISIS
Russian Federation


A. D. Chertova
National University of Science and Technology MISIS
Russian Federation


V. V. Kuts
National University of Science and Technology MISIS
Russian Federation


Yu. S. Pogozhev
National University of Science and Technology MISIS
Russian Federation


References

1. Levashov E.A. et al. // Surf. Coat. Technol. 1997. V. 92 (1–2). P. 34–41.

2. Andreev Yu.Ya. et al. // Surf. Coat. Technol. 1997. V. 90. P. 42–52.

3. Zhong D. et al. // Surf. Coat. Technol. V. 2003. V. 163164. P. 50–56.

4. Onoprienko A.A. et al. // Thin Solid Films. 2021. V. 730. P. 138723.

5. Vyas A. et al. // Surf. Coat. Technol. 2010. V. 204. P. 1528–1534.

6. Qian J.C. et al. // Surf. Coat. Technol. 2015. V. 270. P. 290–298.

7. Holzschuh H. // Int. J. Refract. Hard. Met. 2002. V. 20. P. 143–149.

8. Lauridsen J. et al. // Appl. Surf. Sci. 2012. V. 258 (24). P. 9907–9912.

9. Levashov E.A. et al. // Int. Mater. Rev. 2017. V. 62. 4. P. 203–239.

10. Kiryukhantsev-Korneev Ph.V. et al. // Surf. Coat. Technol. 2022. V. 442. P. 128141.

11. Kiryukhantsev-Korneev Ph.V. // Prot. Met. Phys. Chem. Surf. 2012. V. 48 (5). P. 585–590.

12. Васильев И. // Вектор высоких технологий. 2020. Т. 2 (47). С. 7−14.

13. https://all-pribors.ru/opisanie/82668-21-vik-ues.

14. Berger M. et al. // Surf. Coat. Technol. 2004. V. 185 (23). P. 240–244.

15. Kumar N. et al. // Surf. Coat. Technol. 2014. V. 258. P. 557–565.

16. Ivanov Yu. F. et al. // J. Phys.: Conf. Ser. 2015. V. 652. P. 012015.

17. Sytchenko A.D. et al. // Surf. Interfaces. 2023. V. 37. P. 02654.

18. Zhang C.H. et al. // Appl. Surf. Sci. 2006. V. 252. P. 6141–6153.

19. Aihaiti L. et al. // Coatings. 2021. V. 11. P. 457.

20. Shutou A. et al. // Mater. Letters. 2000. V. 45. P. 143–148.

21. Kiryukhantsev-Korneev P. et al. // Materials. 2023. V. 16. P. 936.


Review

For citations:


Kiryukhantsev-Korneev P.V., Chertova A.D., Kuts V.V., Pogozhev Yu.S. STUDY OF THE INFLUENCE OF ELEMENTAL COMPOSITION ON SPECIFIC ELECTRICAL RESISTANCE OF TI–B–C COATINGS OBTAINED BY MAGNETRON SPUTTERING METHOD. Nuclear Physics and Engineering. 2024;15(6):547-551. (In Russ.) https://doi.org/10.56304/S2079562924060186. EDN: ASVDBW

Views: 19


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)