THERMOPHYSICAL PARAMETERS OF ION-PLASMA CHAMBER TECHNOLOGY FOR DEACTIVATION OF IRRADIATED GRAPHITE OF RBMK
https://doi.org/10.56304/S2079562924060265
EDN: ZIUXKA
Abstract
A new “dry” ion-plasma chamber deactivation technology is developed for the first time to deactivate irradiated graphite blocks. The technology is based on a homogenous shortened plasma discharge in an inert gas (argon) for the ion and thermal treatment of all graphite block surfaces simultaneously in a special chamber. The deactivation of graphite block of the reactor masonry is carried out by the ion sputtering of radionuclides from the block surfaces, as well as due to the thermal diffusion of radionuclides from the graphite block volume under plasma discharge heating. The technology provides a maintenance of the graphite masonry blocks integrity during the deactivation process for the effective burial of radionuclides. The thermophysical parameters of the ion plasma in chamber technology for the deactivation of the grade GR-280 reactor graphite have been obtained.
About the Authors
A. S. PetrovskayaRussian Federation
A. B. Tsyganov
Russian Federation
References
1. Gurau D., Deju R. // Radiat. Phys. Chem. 2015. V. 106 (1). P. 371.
2. Romenkov A.A., Tuktarov M.A., Sudareva N.A., et al. // Ann. Report. 2012. Moscow: NIKIET JSC.
3. Podruzhina T. // Report No. Juel-4166. 2004. Julich: Forschungszentrum Jülich in der Helmholtz-Gemeinschaft. P. 127.
4. Dmitriev S.A., Karlina O.K., Klimov V.L., et al. // Patent RU No. 2192057. 2002.
5. Romenkov A.A., Tuktarov M.A., Karlina O.A., et al. // Patent RU No. 2546981. 2015.
6. Cleaver J., McCrory S., Smith T.E., Dunzik-Gougar M.L. // WM Conf. 2012. Phoenix, Arizona, USA.
7. Fachinger J., von Lensa W., Podruhzina T. // Nucl. Eng. Des. 2008. V. 238. P. 3086.
8. Mason J.B., Bradbury D. // Nucl. Energy. 2000. V. 39 (5). P. 305.
9. El-Genk M.S., Tournier J.P. // J. Nucl. Mater. 2011. V. 41. P. 193.
10. Ojovan M.I., Lee W.E., Sobolev I.A., et al. // Proc. Inst. Mech. Engin., Part E: J. Process Mechanical Engineering. 2004. V. 218 (4). P. 261.
11. Womack R.K. // Met. Mater. Soc. 1999. V. 51 (10). P. 14.
12. Lee W.E., Ojovan M.I., Stennett M.C., Hyatt N.C. // Adv. Appl. Ceram. 2006. V. 105 (1). P. 3.
13. Алешин А.М., Змитродан А.А., Кривобоков В.В. // Технологии обеспечения жизненного цикла ядерных энергетических установок. 2019. № 4 (18). С. 34.
14. Kim S.W., Park S.Y., Roh C.H., et al. // Nucl. Engin. Technol. 2022. V. 54. P. 2329.
15. Wood C.J. // Prog. Nucl. Energy. 1990. V. 23. P. 35.
16. Liu S., He Y., Xie H. // Sustainability. 2022. V. 14. P. 4021.
17. LaBrier D., Dunzik-Gougar M.L. // J. Nucl. Mater. 2014. V. 448. P. 113.
18. Dunzik-Gougar M.L., Smith T.E. // J. Nucl. Mater. 2014. V. 451. P. 328.
19. LaBrier D., Dunzik-Gougar M.L. // J. Nucl. Mater. 2015. V. 460. P. 174.
20. Vulpius D., Baginski K., Fischer C., Thomauske B. // J. Nucl. Mater. 2013. V. 438. P. 163.
21. Payne L., Heard P.J., Scott T.B. // PLoS ONE. 2016. V. 11 (10). P. e0164159. https://doi.org/10.1371/journal.pone.0164159
22. Петровская А.С., Кладков А.Ю., Суров С.В., Цыганов А.Б. // ВАНТ. Сер.: Ядерно-реакторные константы. 2018. Т. 4. С. 185.
23. Contescu C.I., Arregui-Mena J.D., Campbell A.A., Edmondson P.D. et al. // Carbon. 2019. V. 141. P. 663.
24. Laudone G.M., Gribble C.M., Matthews G.P. // Carbon. 2014. V. 73. P. 61.
25. Petrovskaya A.S., Tsyganov A.B. Kladkov A.Yu., Surov S.V., et al. // Proc. Int. Conf. Electrical Engineering and Photonics (EExPolytech). 2021. P. 164. https://doi.org/10.1109/EExPolytech53083.2021.9614889
26. Petrovskaya A.S., Tsyganov A.B. // Phys. Solid State. 2023. V. 65 (12). P. 2184.
27. Petrovskaya A.S., Tsyganov A.B., Surov S.V., Blokhin D.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87 (10). P. 1552. https://doi.org/10.3103/S1062873823703689
28. Петровская А.С., Кладков А.Ю., Суров С.В., Блохин Д.А., Цыганов А.Б. // Ядерная физика и инжиниринг. 2023. Т. 14 (2). С. 131. [Petrovskaya A.S., Kladkov A.Yu., Surov S.V., Blokhin D.A., Tsyganov A.B. // Phys. At. Nucl. 2022. V. 85. P. 1992. https://doi.org/10.1134/S1063778822100416]. https://doi.org/10.56304/S2079562922050359
29. Petrovskaya A.S., Tsyganov A.B., Stakhiv M.R. // Patent RU No. 2711292. 2020.
30. Petrovskaya A.S., Tsyganov A.B., Stakhiv M.R. // Int. Patent Appl. WO2019RU00816, US Patent Appl. US20210272715, European Patent Appl. EP19888171.6, Canada Patent Appl. CA3105179A1, CN112655056Aю 2021.
31. Petrovskaya A.S., Tsyganov A.B. // Patent RU No. 2771172. 2022.
32. Petrovskaya A.S., Tsyganov A.B., Surov S.V., Kladkov A.Yu. // Nucl. Eng. Des. 2022. V. 386. P. 111561.
33. Петровская А.С., Цыганов А.Б., Суров С.В., Блохин Д.А. // Вопросы материаловедения. 2022. Т. 4 (112). С. 199–211. https://doi.org/10.22349/1994-6716-2022-112-4-199-211
Review
For citations:
Petrovskaya A.S., Tsyganov A.B. THERMOPHYSICAL PARAMETERS OF ION-PLASMA CHAMBER TECHNOLOGY FOR DEACTIVATION OF IRRADIATED GRAPHITE OF RBMK. Nuclear Physics and Engineering. 2024;15(6):515-521. (In Russ.) https://doi.org/10.56304/S2079562924060265. EDN: ZIUXKA