Preview

Nuclear Physics and Engineering

Advanced search

THERMOPHYSICAL PARAMETERS OF ION-PLASMA CHAMBER TECHNOLOGY FOR DEACTIVATION OF IRRADIATED GRAPHITE OF RBMK

https://doi.org/10.56304/S2079562924060265

EDN: ZIUXKA

Abstract

A new “dry” ion-plasma chamber deactivation technology is developed for the first time to deactivate irradiated graphite blocks. The technology is based on a homogenous shortened plasma discharge in an inert gas (argon) for the ion and thermal treatment of all graphite block surfaces simultaneously in a special chamber. The deactivation of graphite block of the reactor masonry is carried out by the ion sputtering of radionuclides from the block surfaces, as well as due to the thermal diffusion of radionuclides from the graphite block volume under plasma discharge heating. The technology provides a maintenance of the graphite masonry blocks integrity during the deactivation process for the effective burial of radionuclides. The thermophysical parameters of the ion plasma in chamber technology for the deactivation of the grade GR-280 reactor graphite have been obtained.

About the Authors

A. S. Petrovskaya
Plasma Application Laboratory, InnoPlasmaTech LLC
Russian Federation


A. B. Tsyganov
Plasma Application Laboratory, InnoPlasmaTech LLC
Russian Federation


References

1. Gurau D., Deju R. // Radiat. Phys. Chem. 2015. V. 106 (1). P. 371.

2. Romenkov A.A., Tuktarov M.A., Sudareva N.A., et al. // Ann. Report. 2012. Moscow: NIKIET JSC.

3. Podruzhina T. // Report No. Juel-4166. 2004. Julich: Forschungszentrum Jülich in der Helmholtz-Gemeinschaft. P. 127.

4. Dmitriev S.A., Karlina O.K., Klimov V.L., et al. // Patent RU No. 2192057. 2002.

5. Romenkov A.A., Tuktarov M.A., Karlina O.A., et al. // Patent RU No. 2546981. 2015.

6. Cleaver J., McCrory S., Smith T.E., Dunzik-Gougar M.L. // WM Conf. 2012. Phoenix, Arizona, USA.

7. Fachinger J., von Lensa W., Podruhzina T. // Nucl. Eng. Des. 2008. V. 238. P. 3086.

8. Mason J.B., Bradbury D. // Nucl. Energy. 2000. V. 39 (5). P. 305.

9. El-Genk M.S., Tournier J.P. // J. Nucl. Mater. 2011. V. 41. P. 193.

10. Ojovan M.I., Lee W.E., Sobolev I.A., et al. // Proc. Inst. Mech. Engin., Part E: J. Process Mechanical Engineering. 2004. V. 218 (4). P. 261.

11. Womack R.K. // Met. Mater. Soc. 1999. V. 51 (10). P. 14.

12. Lee W.E., Ojovan M.I., Stennett M.C., Hyatt N.C. // Adv. Appl. Ceram. 2006. V. 105 (1). P. 3.

13. Алешин А.М., Змитродан А.А., Кривобоков В.В. // Технологии обеспечения жизненного цикла ядерных энергетических установок. 2019. № 4 (18). С. 34.

14. Kim S.W., Park S.Y., Roh C.H., et al. // Nucl. Engin. Technol. 2022. V. 54. P. 2329.

15. Wood C.J. // Prog. Nucl. Energy. 1990. V. 23. P. 35.

16. Liu S., He Y., Xie H. // Sustainability. 2022. V. 14. P. 4021.

17. LaBrier D., Dunzik-Gougar M.L. // J. Nucl. Mater. 2014. V. 448. P. 113.

18. Dunzik-Gougar M.L., Smith T.E. // J. Nucl. Mater. 2014. V. 451. P. 328.

19. LaBrier D., Dunzik-Gougar M.L. // J. Nucl. Mater. 2015. V. 460. P. 174.

20. Vulpius D., Baginski K., Fischer C., Thomauske B. // J. Nucl. Mater. 2013. V. 438. P. 163.

21. Payne L., Heard P.J., Scott T.B. // PLoS ONE. 2016. V. 11 (10). P. e0164159. https://doi.org/10.1371/journal.pone.0164159

22. Петровская А.С., Кладков А.Ю., Суров С.В., Цыганов А.Б. // ВАНТ. Сер.: Ядерно-реакторные константы. 2018. Т. 4. С. 185.

23. Contescu C.I., Arregui-Mena J.D., Campbell A.A., Edmondson P.D. et al. // Carbon. 2019. V. 141. P. 663.

24. Laudone G.M., Gribble C.M., Matthews G.P. // Carbon. 2014. V. 73. P. 61.

25. Petrovskaya A.S., Tsyganov A.B. Kladkov A.Yu., Surov S.V., et al. // Proc. Int. Conf. Electrical Engineering and Photonics (EExPolytech). 2021. P. 164. https://doi.org/10.1109/EExPolytech53083.2021.9614889

26. Petrovskaya A.S., Tsyganov A.B. // Phys. Solid State. 2023. V. 65 (12). P. 2184.

27. Petrovskaya A.S., Tsyganov A.B., Surov S.V., Blokhin D.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87 (10). P. 1552. https://doi.org/10.3103/S1062873823703689

28. Петровская А.С., Кладков А.Ю., Суров С.В., Блохин Д.А., Цыганов А.Б. // Ядерная физика и инжиниринг. 2023. Т. 14 (2). С. 131. [Petrovskaya A.S., Kladkov A.Yu., Surov S.V., Blokhin D.A., Tsyganov A.B. // Phys. At. Nucl. 2022. V. 85. P. 1992. https://doi.org/10.1134/S1063778822100416]. https://doi.org/10.56304/S2079562922050359

29. Petrovskaya A.S., Tsyganov A.B., Stakhiv M.R. // Patent RU No. 2711292. 2020.

30. Petrovskaya A.S., Tsyganov A.B., Stakhiv M.R. // Int. Patent Appl. WO2019RU00816, US Patent Appl. US20210272715, European Patent Appl. EP19888171.6, Canada Patent Appl. CA3105179A1, CN112655056Aю 2021.

31. Petrovskaya A.S., Tsyganov A.B. // Patent RU No. 2771172. 2022.

32. Petrovskaya A.S., Tsyganov A.B., Surov S.V., Kladkov A.Yu. // Nucl. Eng. Des. 2022. V. 386. P. 111561.

33. Петровская А.С., Цыганов А.Б., Суров С.В., Блохин Д.А. // Вопросы материаловедения. 2022. Т. 4 (112). С. 199–211. https://doi.org/10.22349/1994-6716-2022-112-4-199-211


Review

For citations:


Petrovskaya A.S., Tsyganov A.B. THERMOPHYSICAL PARAMETERS OF ION-PLASMA CHAMBER TECHNOLOGY FOR DEACTIVATION OF IRRADIATED GRAPHITE OF RBMK. Nuclear Physics and Engineering. 2024;15(6):515-521. (In Russ.) https://doi.org/10.56304/S2079562924060265. EDN: ZIUXKA

Views: 35


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)