Investigation of Hydride Reorentation in Unirradiated Cladding Tubes from E110 Alloy Under Long-Term Dry Storage Conditions
https://doi.org/10.56304/S2079562922010225
Abstract
Hydrides’ reorientation is one of the most critical mechanisms observed during dry storage of spent fuel, which can cause depressurization of the fuel element cladding. In this work hydrides reorientation of unirradiated gas pressurized samples made from VVER-1000 cladding material (Zr‒1% Nb) has been investigated under conditions simulating long-term dry storage. Thermomechanical tests were conducted with samples containing 100 and 200 ppm of H according to different annealing scenarios with cladding hoop stresses up to 100 MPa. It was revealed that hydrides reorientation and induced plasticity decrease of the cladding material were not significant. Hoop stress level appeared to be the most significant factor that affects hydrides reorientation in the cladding.
About the Authors
R. A. KurskiyRussian Federation
A. V. Rozhkov
O. O. Zabusov
A. B. Gaiduchenko
A. S. Bragin
D. A. Maltsev
A. A. Shishkin
References
1. <em>Billone M.C. et al.</em> // J. Nucl. Mater. 2013. V. 433. Nos. 1–3. P. 431. https://doi.org/10.1016/j.jnucmat.2012.10.002
2. <em>Motta A.T. et al.</em> // J. Nucl. Mater. 2019. V. 518. P. 440. https://doi.org/10.1016/j.jnucmat.2019.02.042
3. <em>Kim Y.J. et al.</em> // J. Nucl. Sci. Technol. 2015. V. 52. No. 5. P. 717. https://doi.org/10.1080/00223131.2014.978829
4. Cladding Considerations for the Transportation and Storage of Spent Fuel. Nuclear Regulatory Commission, Interim Staff Guidance (ISG)-11. Rev. 3. 2003.
5. <em>Kamimura K.</em> Integrity Criteria of Spent Fuel for Dry Storage in Japan. Proc. International Seminar on Spent Fuel Storage. 2010. Tokyo.
6. IAEA-TECDOC-1385. 2004. Vienna: IAEA.
7. <em>Wang Z. et al.</em> // Metall. Mater. Trans. B. 2014. V. 45. No. 2. P. 532. https://doi.org/10.1007/s11663-013-9866-0
8. <em>Kurskiy R.A. et al.</em> // Phys. Met. Metallogr. 2021. V. 122. P. 861. https://doi.org/10.1134/S0031918X21090076
9. <em>Yegorova L. et al.</em> NUREG/IA-0156. 1999. U.S. Nuclear Regulatory Commission. Vol. 2.
10. <em>Khatamian D.</em> // J. Alloys Compd. 1999. V. 293. P. 893. https://doi.org/10.1016/S0925-8388(99)00388-6
11. <em>Kolesnik M. et al.</em> // J. Nucl. Mater. 2018. V. 508. P. 567. https://doi.org/10.1016/j.jnucmat.2018.06.012
12. <em>Mani Krishna K.V. et al.</em> // Acta Mater. 2006. V. 54. No. 18. P. 4665. https://doi.org/10.1016/j.actamat.2006.06.004
13. <em>Lee J.M. et al.</em> // J. Nucl. Mater. 2018. V. 509. P. 285. https://doi.org/10.1016/j.jnucmat.2018.07.005
Review
For citations:
Kurskiy R.A., Rozhkov A.V., Zabusov O.O., Gaiduchenko A.B., Bragin A.S., Maltsev D.A., Shishkin A.A. Investigation of Hydride Reorentation in Unirradiated Cladding Tubes from E110 Alloy Under Long-Term Dry Storage Conditions. Nuclear Physics and Engineering. 2022;13(1):5-12. (In Russ.) https://doi.org/10.56304/S2079562922010225