Preview

Nuclear Physics and Engineering

Advanced search

Trapping and Desorption of Hydrogen Isotopes under Irradiation of Zirconium Alloy E110 with Ions of Deuterium Plasma

https://doi.org/10.56304/S2079562923030144

EDN: QJTGSQ

Abstract

The paper investigates the trapping and desorption of hydrogen isotopes under irradiation of zirconium alloy E110 with ions of deuterium plasma. It is established that under the irradiation, hydrogen exchange between the alloy and the gaseous ambient occurs: part of deuterium from the irradiation flux is trapped by the alloy, and at the same time hydrogen initially contained in the alloy is partially desorbed. In general, hydrogen exchange results in an increase in the content of hydrogen isotopes in the sample. Addition of 30 at. % oxygen to the plasma-forming gas, as well as increasing the sample temperature from T = 450 K to T = 600 K, slows down deuterium trapping and accelerates hydrogen desorption, leading to a decrease in the content of hydrogen isotopes in the sample. Increasing the dose of irradiation of E110 alloy with deuterium plasma ions intensifies both deuterium trapping and hydrogen desorption. Based on the experimental results, the mechanism of hydrogen exchange between zirconium alloy and gaseous ambient under the ion irradiation is proposed. The process includes three stages: reactions on the oxidized surface of zirconium alloy (hydroxylation of surface oxide and formation of water molecules); reactions on the metal-oxide boundary; and transport of hydrogen isotopes through the surface oxide layer in both directions. Surface reactions initiated by irradiation trigger the hydrogen exchange process.

About the Authors

A. E. Evsin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


L. B. Begrambekov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


References

1. Kato S. et al. // Appl. Phys. Lett. 2010. V. 96 (5). P. 051912. https://doi.org/10.1063/1.3269598

2. Guo Y. et al. // Fusion Eng. Des. 2019. V. 149. P. 111340. https://doi.org/10.1016/j.fusengdes.2019.111340

3. Huang H. et al.// Fusion Eng. Des. 2020. V. 152. P. 111469. https://doi.org/10.1016/j.fusengdes.2020.111469

4. Shi L.Q. et al. // J. Vac. Sci. Technol. A. 2002. V. 20 (6). P. 1840. https://doi.org/10.1116/1.1506174

5. Evsin A.E. et al. // Vacuum. 2016. V. 129. P. 183. https://doi.org/10.1016/j.vacuum.2016.01.022

6. Schur D.V., Lavrenko V.A. // Vacuum. 1993. V. 44 (9). P. 897. https://doi.org/10.1016/0042-207X(93)90247-8

7. Begrambekov L.B et al. // J. Surf. Invest. 2015. V. 9 (1). P. 190. https://doi.org/10.1134/S1027451015010255

8. Беграмбеков Л.Б. и др. // Ядерная физика и инжиниринг. 2018. Т. 9 (3.) С. 265. https:// doi.org/10.1134/S2079562918030028 [Begrambekov L.B. et al. // Phys. At. Nucl. 2018. V. 81 (11). P. 1601]. https://doi.org/10.1134/S1063778818120025

9. Axelsson K.-O., Keck K.-E., Kasemo B. // Appl. Surf. Sci. 1986. V. 25 (1-2). P. 217. https://doi.org/10.1016/0169-4332(86)90040-1

10. Tepper B. et al. // Surf. Sci. 2002. V. 496 (1-2). P. 64. https://doi.org/10.1016/S0039-6028(01)01607-7

11. Vesel A., Mozetic M., Balat-Pichelin M. // Appl. Surf. Sci. 2016. V. 387. P. 1140. https://doi.org/10.1016/j.apsusc.2016.06.098

12. Yamauchi Y., Hirohata, Y., Hino T. // J. Nucl. Mater. 2007. V. 363-365. P. 984. https://doi.org/10.1016/j.jnucmat.2007.01.136

13. Shinoda N., Yamauchi Y., Hino T. // Fusion Eng. Des. 2014. V. 89 (7-8). P. 921. https://doi.org/10.1016/j.fusengdes.2014.05.019

14. Reinelt M., Linsmeier Ch. // J. Nucl. Mater. 2009. V. 390–391. P. 568. https://doi.org/10.1016/j.jnucmat.2009.01.103

15. Baron-Wiechec A. et al. // Fusion Eng. Des. 2018. V. 133. P. 135. https://doi.org/10.1016/j.fusengdes.2018.05.075

16. Barit I.Ya. et al. // Sov. At. Energy. 1982. V. 52. P. 424. https://doi.org/10.1007/BF01123889

17. Захаров А.М., Двойченкова О.А., Евсин А.Е. // Ядерная физика и инжиниринг. 2014. Т. 5 (11-12). С. 964. https://doi.org/10.1134/S2079562914090188 [Zakharov A.M., Dvoichenkova O.A., Evsin A.E. // Phys. At. Nucl. 2015. V. 78 (14). P. 1643]. https://doi.org/10.1134/S106377881514015X

18. Zielinski A., Sobieszczyk S. // Int. J. Hydrogen Energy. 2011. V. 36 (14). P. 8619. https://doi.org/10.1016/j.ijhydene.2011.04.002

19. Begrambekov L.B. et al. // Int. J. Hydrogen Energy. 2019. V. 44 (31). P. 17154. https://doi.org/10.1016/j.ijhydene.2019.04.198

20. Juillet C. et al. // Corros. Sci. 2020. V. 173. P. 108762. https://doi.org/10.1016/j.corsci.2020.108762

21. Ziegler J., Biersack J.P., Ziegler M.D. SRIM-The Stopping and Ranges of Ions in Solids. SRIM Co., Chester. 2008. www.srim.org.

22. Nakatsuji H. et al. // J. Phys. Chem. 1994. V. 98 (46). P. 11840. https://doi.org/10.1021/j100097a008

23. Xiong K., Robertson J., Clark S.J. // J. Appl. Phys. 2007. V. 102 (8). P. 083710. https://doi.org/10.1063/1.2798910

24. Rabone J., Van Uffelen P. // J. Nucl. Mater. 2015. V. 459. P. 30. https://doi.org/10.1016/j.jnucmat.2015.01.002


Review

For citations:


Evsin A.E., Begrambekov L.B. Trapping and Desorption of Hydrogen Isotopes under Irradiation of Zirconium Alloy E110 with Ions of Deuterium Plasma. Nuclear Physics and Engineering. 2024;15(4):392-399. (In Russ.) https://doi.org/10.56304/S2079562923030144. EDN: QJTGSQ

Views: 14


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)