Optimization of IH-type Resonators to Reduce the Peak Values of the Electric Field on the Surface
https://doi.org/10.56304/S207956292303017X
EDN: MWTFWY
Abstract
Results of calculations of the electrodynamic characteristics of short five-gap accelerating cavities of the IH type are presented. The cavities are designed for a linear accelerator of protons and light ions with a charge-to-mass ratio A/Z ranging from 1 to 3.5. Developed at National Research Nuclear University MEPhI, this accelerator, which is designed as a source of charged particles with a beam energy of 7.5MeV/nucleon, is intended for basic and applied research. The issues of the complex influence of the geometry of the drift tubes and the geometry of the drift tube support on the magnitude of the field strength on the surface of the resonators, the power losses in the walls of the resonators, and the distribution of the accelerating field on the axis are considered, taking into account the influence of the accuracy of segmenting in simulation.
About the Authors
A. A. GorchakovRussian Federation
Ya. V. Shashskov
Russian Federation
References
1. Nolen J.A. et al. Argonne National Laboratory Report No. ATLAS-99-1. 1999.
2. Ostroumov P.N., Shepard K.W. // Phys. Rev. Spec. Top. Accel. Beams. 2000. V.
3. P. 030101. 3. Batygin Yu.K. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2022. V. 1040. P. 167192. https://doi.org/10.1016/j.nima.2022.167192
4. Masunov E.S., Samoshin A.V. // Proc. RuPAC-2008. 2008. P. 28.
5. Polozov S.M. et al. // Proc. RuPAC'21. 2021. P. 51. https://doi.org/10.18429/JACoW-RuPAC2021-TUB07
6. Bres M. et al. // Part. Accel. 1971. V. 2. P. 17.
7. Weis T., Klein H., Schempp A. // IEEE Trans. Nucl. Sci. 1983. V. 30 (4). P. 3548.
8. Kurennoy S., Rybarcyk L., and Wangler T. // Proc. PAC’07. 2007. P. 3824.
9. Kurennoy S., O’Hara J., Rybarcyk L. // Proc. HB-2008. 2008. P. 428.
10. Горчаков А.А. и др. // Ядерная физика и инжиниринг. 2022. Т. 13 (3). С. 304 [Gorchakov A.A. et al. // Phys. At. Nucl. 2021. V. 84 (12). P. 2018].
11. Горчаков А.А. и др. // Сб. тр. конф. ЛаПлаз-2021. 2021. Ч. 2. С. 404.
12. Горчаков А.А. и др. // Сб. тр. конф. ЛаПлаз-2021. 2021. Ч. 2. С. 410.
13. Булгачева М.М., Гусарова М.А. // Сб. тр. конф. ЛаПлаз-2022. 2022. С. 315.
14. Булгачева М.М. и др. // Ядерная физика и инжиниринг. 2023. Т. 14 (6). С. 593 [Bulgacheva M.M. et al. // Phys. At. Nucl. 2022. V. 85 (12). P. 2061].
15. Булгачева М.М. и др. // Письма в ЭЧАЯ. 2023. Т. 20 (4). С. 249.
16. Bulgacheva M.M. et al. // Phys. Part. Nucl. Lett. 2023. V. 20 (4). P. 720.
17. Сулимов А.С. // Сб. тр. конф. ЛаПлаз-2023. 2023. С. 312.
18. Kilpatrick W.D. // Rev. Sci. Instrum. 1957. V. 28 (10). P. 824. https://doi.org/10.1063/1.1715731
19. Thomas P. Wangler. RF Linear Accelerators. 2008. Weinheim: Wiley.
20. Grespan F. et al. ESS DTL: RF Design. ESS Report. 2013. Lund.
21. Ratzinger U. H-Type Linac Structures. CERN Yellow Report 2005003. 2005. Geneva: CERN.
22. Facco A., Zvyagintsev V. // Phys. Rev. Spec. Top. Accel. Beams. 2011. V. 14. P. 070101. https://doi.org/10.1103/PhysRevSTAB.14.070101
23. Computer Simulation Technology, https://www.cst.com.
Review
For citations:
Gorchakov A.A., Shashskov Ya.V. Optimization of IH-type Resonators to Reduce the Peak Values of the Electric Field on the Surface. Nuclear Physics and Engineering. 2024;15(4):361-367. (In Russ.) https://doi.org/10.56304/S207956292303017X. EDN: MWTFWY