On Features of Formation of Localized Shear Bands in Depleted Uranium
https://doi.org/10.56304/S2079562923030272
EDN: NINGIF
Abstract
The processes of plastic shear localization in DU-0.75Ti alloy samples subjected to high-speed shear are considered. A mathematical model describing this process in the 1D and 2D cases is formulated. A numerical algorithm for the mathematical modeling of the processes under consideration is proposed. A series of computational experiments on high-speed loading of DU samples is carried out. The localization process dynamics depending on the initial rate of plastic shear is investigated. The values of the temperature, velocity, stress, and shear fields are obtained. The influence of the problem dimension on some of the most important characteristics of the localization process is investigated.
About the Authors
R. V. MuratovRussian Federation
P. N. Ryabov
Russian Federation
N. A. Kudryashov
Russian Federation
References
1. Rittel D. // Mater. Lett. 2005. V. 59. P. 1845.
2. Rittel D., Wang Z.G., Merzer M. // Phys. Rev. Lett. 2006. V. 96 (7). P. 075502.
3. Rittel D., Osovski S. // Int. J. Fract. 2010. V. 162 (1–2). P. 177.
4. Shockey D.A. et al. // Int. J. Impact Eng. 1990. V. 9 (3). P. 263.
5. Shockey D. et al. // Exp. Mech. 2007. V. 47 (6). P. 723.
6. Wright T.W. The Physics and Mathematics of Adiabatic. 2002. Cambridge: Cambridge University Press.
7. Timothy S. // Acta Metall. 1987. V. 35 (2). P. 301.
8. Moss G.L. Shock Waves and High-Strain-Rate Phenomena in Metals. 1981. Berlin: Springer.
9. Schneider J.A., Nunes A.C. // Nunes, Metall. Mater. Trans. B. 2004. V. 35 (4). P. 777.
10. Hammerschmidt M., Kreye H. Shock Waves and HighStrain-Rate Phenomena in Metals. 1981. US: Springer.
11. Seidel T.U., Reynolds A.P. // Metall. Mater. Trans. A. 2001. V. 32. P. 2879.
12. Marchand A., Duffy J. // J. Mech. Solids. 1988. V. 36. P. 251.
13. Duffy J., Campbell J.D., Hawley R.H. // J. Appl. Mech. 1971. V. 38. P. 83.
14. Ramesh K., Narasimhan S. // Int. J. Solids Struct. 1996. V. 33 (25). P. 3723.
15. Ranc N. et al. // Mech. Mater. 2008. V. 40 (4). P. 255.
16. Nesterenko V.F., Meyers M.A., Wright T.W. // Acta Mater. 1998. V. 46. P. 327.
17. Xue Q., Meyers M.A., Nesterenko V.F. // Acta Mater. 2002. V. 50 (3). P. 575.
18. Zhou F., Wright T.W., Ramesh K.T. // J. Mech. Phys. Solids 2006. V. 54. P. 1376.
19. Kudryashov N.A., Ryabov P.N., Zakharchenko A.S. // J. Mech. Phys. Solids. 2015. V. 76. P. 180.
20. Wright T.W., Ockendon H. // Int. J. Plast. 1996. V. 12. P. 927.
21. Wright T.W., Walter J.W. // J. Mech. Phys. Solids. 1987. V. 35 (6). P. 701.
22. Molinari A., Clifton R. // J. Appl. Mech. 1987. V. 54. P. 806.
23. Xie J.Q., Bayoumi A.E., Zbib H.M. // J. Mater. Eng. Perform. 1995. V. 4 (1). P. 32.
24. Grady D.E. // J. Mech. Phys. Solids. 1992. V. 40 (6). P. 1197.
25. Grady D.E., Kipp M.E. // J. Mech. Phys. Solids. 1987. V. 35. P. 95.
26. Grady D.E. // J. Phys. IV. 1991. V. 1 (C3). P. 3.
27. Kudryashov N.A., Muratov R.V., Ryabov P.N. // Appl. Math. Comput. 2018. V. 338. P. 164.
28. Dobrev V.A., Kolev T.V., Rieben R.N. // J. Comput. Phys. 2014. V. 257. P. 1062.
29. Tillotson J.H. General Atomic Report. GA-3216. 1962. San Diego: General Atomic.
30. Brundage A. L. // Proc. Eng. 2013. V. 58. P. 461.
31. Stewart S. et al. // Proc. AIP Conf. 2020. V. 2272. P. 080003.
32. Walter J.W. // Int. J. Plast. 1992. V. 8. P. 657.
33. Zhou F., Wright T.W., Ramesh K.T. // J. Mech. Phys. Solids. 2006. V. 54. P. 904.
34. Batra R.C., Liu D. // J. Appl. Mech. 1989. V. 56. P. 527.
35. Meyer M. et al. // J. Nucl. Mater. 2002. V. 304 (2–3). P. 221.
36. Parida S. et al. // Phys. Chem. Solids. 2001. V. 62 (3). P. 585.
37. Eckelmeyer K.H. Diffusional Transformations, Strengthening Mechanisms and Mechanical Properties of Uranium Alloys: Technical Report. 1982. United States: SNL.
38. Johnson G.R., Hoegfeldt J.M. // J. Eng. Mater. Technol. 1983. V. 105. P. 42.
39. Johnson G.R., Hoegfeldt J.M. // J. Eng. Mater. Technol. 1983. V. 105. P. 48.
Review
For citations:
Muratov R.V., Ryabov P.N., Kudryashov N.A. On Features of Formation of Localized Shear Bands in Depleted Uranium. Nuclear Physics and Engineering. 2024;15(4):350-360. (In Russ.) https://doi.org/10.56304/S2079562923030272. EDN: NINGIF