On Specific Features of an Approach Based on Feedforward Neural Networks to Solve Problems Based on Differential Equations
https://doi.org/10.56304/S2079562923030211
EDN: YBAYHM
Abstract
To date, a multitude of methods have been developed for numerical solution of problems based on ordinary differential equations (ODEs) and partial differential equations (PDEs). The most common of these are finite-difference method, the finite-element method, and the finite-volume method. In this study, an alternative numerical approach is implemented, based on the approximation of functions by feedforward neural networks. The solution obtained using this approach is a differentiable analytical expression; in this respect it differs significantly from other methods that offer either discrete solutions or solutions with limited differentiability. In this study, we examine the influence of neural-network parameters (such as activation functions and weights in the error function) on the rate of convergence and accuracy of the obtained approximation of the solution for three types of differential equations: ordinary differential equations, integrable partial differential equations, and non-integrable partial differential equations. As model equations, we consider Korteweg–de Vries and Kudryashov–Sinelshchikov partial differential equations and second-order ordinary differential equations. In each case described above, the optimal ratios of the weight coefficients are found. The activation functions most efficient for each problem are determined.
About the Authors
S. A. LadyginRussian Federation
R. N. Karachurin
Russian Federation
P. N. Ryabov
Russian Federation
N. A. Kudryashov
Russian Federation
References
1. Самарский А.А. и др. // Журнал вычислительной математики и математической физики. 1968. Т. 8 (5). С. 1025.
2. Бураго Н.Г., Кукуджанов В.Н. Решение упругопластических задач методом конечных элементов. Пакет прикладных программ “Астра”. 1988. Препринт.
3. Домбровский Л.А., Баркова Л.Г. // Теплофизика высоких температур, 1986. Т. 24 (4). С. 762.
4. Вабищевич П.Н., Самарский А.А. // Журнал вычислительной математики и математической физики. 2000. Т. 40 (5). С. 726.
5. Ryabov P.N. // J. Mech. Phys. Solids. 2015. V. 76. P. 180.
6. Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений: учеб. пособие для вузов. 1978. Москва: Наука.
7. Зенкевич О. Метод конечных элементов в технике. 1975. Москва: Мир.
8. Ковеня В.М., Чирко Д.В. Методы конечных разностей и конечных объемов для решения задач математической физики. 2013. Новосибирск: НГУ. С. 24–26.
9. Muratov R.V., Kudryashov N.A., Ryabov P.N. // Commun. Nonlin. Sci. Numer. Simul. 2021. V. 101. P. 105858.
10. Lagaris I.E., Likas A., Fotiadis D.I. // IEEE Trans. Neural Networks. 1998. V. 9 (5). P. 987.
11. Fang Y. et al. // Chaos, Solitons Fract. 2022. V. 158. P. 112118.
12. Ketkar N., Moolayil J. Automatic Differentiation in Deep Learning. Deep Learning with Python. 2021. Berkeley: Apress.
13. Кудряшов H.А. Методы нелинейной математической физики: Учебное пособие. 2010. Долгопрудный: Издательский Дом “Интеллект”.
14. Li J., Chen Y. // Commun. Theor. Phys. 2020. V. 72 (11). P. 115003.
15. Kudryashov N.A., Sinelshchikov D.I. // Phys. Lett. A. 2010. V. 374. P. 2011.
16. Ryabov P.N. // Appl. Math. Comput. 2010. V. 217 (7). P. 3585.
Review
For citations:
Ladygin S.A., Karachurin R.N., Ryabov P.N., Kudryashov N.A. On Specific Features of an Approach Based on Feedforward Neural Networks to Solve Problems Based on Differential Equations. Nuclear Physics and Engineering. 2024;15(4):340-349. (In Russ.) https://doi.org/10.56304/S2079562923030211. EDN: YBAYHM