Preview

Nuclear Physics and Engineering

Advanced search

Application of Minor Actinides for the Large-Scale Production of 238Pu in a Supercritical Light-Water Reactor

https://doi.org/10.56304/S2079562923030338

EDN: NOOIMI

Abstract

The paper analyzes a possibility for large-scale production of high-purity plutonium suitable for radioisotope thermo-electrical generators (RITEG) of spacecrafts in a light-water power reactor with supercritical coolant parameters. Neptunium and americium fractions of minor actinides from trans-uranium radioactive wastes were used as the starting materials. The starting materials were placed in central fuel assembly (FA) of the reactor core. It was shown that significant plutonium amounts with low content of 236Pu (below 2 ppm) and high content of 238Pu (above 80%) could be produced in central (Np,Am)-FA surrounded by the assemblies filled up with natural or radiogenic lead. These assemblies play a role of a protective barrier against high-energy fission neutrons emitted by the neighboring UO2–FA which are able to increase content of 236Pu through threshold 237Np(n,2n)236Pu reaction. The paper presents numerical evaluations for production rates of the RITEG-suitable plutonium in central (Np,Am)-FA surrounded by such protective lead-containing assemblies.

About the Authors

A. N. Shmelev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


N. I. Geraskin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


V. A. Apse
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


V. B. Glebov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


G. G. Kulikov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


E. G. Kulikov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


References

1. Daily C.R., McDuffee J.L. // Nucl. Technol. 2020. V. 2006. P. 1182.

2. INFCIRC/153. The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons. 2008. IAEA.

3. Григорьева И.С., Мейлихова Е.З. Физические величины. Справочник. 1991. Москва: Энергоатомиздат.

4. Абагян Л.П., Базазянц Н.О., Николаев М.Н. и др. Групповые константы для расчета реакторов и защиты. 1981. Москва: Энергоатомиздат.

5. Лапин А.С. и др. // Ядерная энергетика. 2020. № 2. С. 93.

6. Международный форум “Поколение IV”. https://ru.frwiki.wiki/wiki/Forum_international_G% C3%A9n%C3%A9ration_IV.

7. Деев В.И., Круглов А.Б., Маслов Ю.А. и др. Ядерные реакторы с водой сверхкритического давления (основы теплового расчета). 2015. Москва: НИЯУ МИФИ.

8. Баранаев Ю.Д., Глебов А.П., Кириллов П.Л. и др. // Тр. конф. МНТК-2011. 2011. http://www.gidropress. podolsk.ru/files/proceedings/mntk2011/documents/ mntk2011-028.pdf.

9. Ryzhov S.B., Mohov V.A., Nikitenko M.P., et al. Proc. 5th Intl. Symp. Supercritical Water-Cooled Reactors (ISSCWR-5). 2011. P. 76.

10. Кузьмин А.М., Шмелев А.Н., Апсэ В.А. Моделирование физических процессов в энергетических ядерных реакторах на быстрых нейтронах. 2015. Москва: Издательский дом МЭИ.

11. Интepнeт-пpoгpaммa WaterSteamPro Calculator. www.wsp.ru/ru.


Review

For citations:


Shmelev A.N., Geraskin N.I., Apse V.A., Glebov V.B., Kulikov G.G., Kulikov E.G. Application of Minor Actinides for the Large-Scale Production of 238Pu in a Supercritical Light-Water Reactor. Nuclear Physics and Engineering. 2024;15(4):315-323. (In Russ.) https://doi.org/10.56304/S2079562923030338. EDN: NOOIMI

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)