Preview

Nuclear Physics and Engineering

Advanced search

Method for Investigation of the Cooling Process of a Layout of a Lithium Divertor Module (LDM) under High Energy Loads

https://doi.org/10.56304/S2079562923030351

EDN: VGPMIY

Abstract

This work is devoted to the methodology for conducting experiments to study the process of cooling by a low-pressure gas–droplet flow under conditions of high energy loads on the receiving surface of a lithium divertor module (LDM) layout. The paper describes in detail the design of the LDM model, all the main systems, parameters, and layout of the test bench. The operating modes of water and gas cooling systems have been calculated under thermal action on the LDM layout with a power equal to 5 MW/m2. A description of the experiment on the development of a technique for cooling an LDM layout with a low-pressure gas–droplet flow has been given.

About the Authors

E. Yu. Tulubaev
Institute of Atomic Energy, National Nuclear Center, Republic of Kazakhstan
Russian Federation


V. N. Kudiyarov
Tomsk Polytechnic University
Russian Federation


N. N. Nikitenkov
Tomsk Polytechnic University
Russian Federation


I. L. Tazhibaeva
Institute of Atomic Energy, National Nuclear Center, Republic of Kazakhstan
Russian Federation


A. V. Vertkov
NIKIET JSC
Russian Federation


M. Yu. Zharkov
NIKIET JSC
Russian Federation


Yu. V. Ponkratov
Institute of Atomic Energy, National Nuclear Center, Republic of Kazakhstan
Russian Federation


Yu. N. Gordienko
Institute of Atomic Energy, National Nuclear Center, Republic of Kazakhstan
Russian Federation


V. S. Bochkov
Institute of Atomic Energy, National Nuclear Center, Republic of Kazakhstan
Russian Federation


References

1. Tabares F. et al. // J. Nucl. Mater. 2015. V. 463. P. 1142.

2. Federici G. et. al. // J. Nucl. Mater. 2005. V. 337–339. P. 684.

3. Mazzitelli G. et al. // Porc. 48th APS. 2006. P. UI1.00005.

4. Apicella M.L. et al. // Fusion Eng. Des. 2005. V. 75–79. P. 351.

5. Kugel H.W. et al. // Fusion Eng. Des. 2012. V. 87. P. 1724.

6. van Eden G.G. et al. // Phys. Rev. Lett. 2016. V. 116 (13) P. 135002.

7. Идельчик И.Е. Справочник по гидравлическим сопротивлениям. 1975. Москва: Машиностроение.

8. Rindt P. et al. // J. Nucl. Fusion. 2019. P. 15. https://doi.org/10.1088/1741-4326/ab0560

9. Nygren R.E., Tabarés F.L. // Nucl. Mater. Energy. 2016. V. 9. P. 6. https://doi.org/10.1016/j.nme.2016.08.008

10. Evtikhin A. et al. // J. Nucl. Mater. 1999. P. 271. https://doi.org/10.1016/S0022- 3115(98)00793-4

11. Evtikhin V.A. et al. // Fusion Energy. 1996. P. 659.

12. Vertkov A. et al. // Phys. At. Nucl. 2018. V. 81 (7). P. 1000.

13. Morgan T.W. et al. // Plasma Phys. Control. Fusion. 2018. V. 60 (1). P. 014025. https://doi.org/10.1088/1361-6587/aa86cd

14. Kurnaev V. et al. // J. Nucl. Mater. 2015. V. 463. P. 228. https://doi.org/10.1016/j.jnucmat.2014.12.076

15. Tulubayev Ye. et al. // Mater. Today. 2023. V. 81. P. 1209. https://doi.org/10.1016/j.matpr.2023.03.176

16. Vertkov A. et al. // Fusion Eng. Des. 2017. V. 117. P. 130. https://doi.org/10.1016/j.fusengdes.2017.01.041

17. Lyublinski I.E. et al. // J. Phys.: Conf. Ser. 2017. V. 891 (1). P. 012152.

18. Vertkov A.V. et al. // Phys. At. Nucl. 2020. V. 83 (7). P. 1. https://doi.org/10.1088/1742-6596/1370/1/012062

19. Mirnov S.V. et al. // J. Phys.: Conf. Ser. 2018. V. 1128. P. 012128


Review

For citations:


Tulubaev E.Yu., Kudiyarov V.N., Nikitenkov N.N., Tazhibaeva I.L., Vertkov A.V., Zharkov M.Yu., Ponkratov Yu.V., Gordienko Yu.N., Bochkov V.S. Method for Investigation of the Cooling Process of a Layout of a Lithium Divertor Module (LDM) under High Energy Loads. Nuclear Physics and Engineering. 2024;15(3):291-299. (In Russ.) https://doi.org/10.56304/S2079562923030351. EDN: VGPMIY

Views: 13


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)