Method for Investigation of the Cooling Process of a Layout of a Lithium Divertor Module (LDM) under High Energy Loads
https://doi.org/10.56304/S2079562923030351
EDN: VGPMIY
Abstract
This work is devoted to the methodology for conducting experiments to study the process of cooling by a low-pressure gas–droplet flow under conditions of high energy loads on the receiving surface of a lithium divertor module (LDM) layout. The paper describes in detail the design of the LDM model, all the main systems, parameters, and layout of the test bench. The operating modes of water and gas cooling systems have been calculated under thermal action on the LDM layout with a power equal to 5 MW/m2. A description of the experiment on the development of a technique for cooling an LDM layout with a low-pressure gas–droplet flow has been given.
About the Authors
E. Yu. TulubaevRussian Federation
V. N. Kudiyarov
Russian Federation
N. N. Nikitenkov
Russian Federation
I. L. Tazhibaeva
Russian Federation
A. V. Vertkov
Russian Federation
M. Yu. Zharkov
Russian Federation
Yu. V. Ponkratov
Russian Federation
Yu. N. Gordienko
Russian Federation
V. S. Bochkov
Russian Federation
References
1. Tabares F. et al. // J. Nucl. Mater. 2015. V. 463. P. 1142.
2. Federici G. et. al. // J. Nucl. Mater. 2005. V. 337–339. P. 684.
3. Mazzitelli G. et al. // Porc. 48th APS. 2006. P. UI1.00005.
4. Apicella M.L. et al. // Fusion Eng. Des. 2005. V. 75–79. P. 351.
5. Kugel H.W. et al. // Fusion Eng. Des. 2012. V. 87. P. 1724.
6. van Eden G.G. et al. // Phys. Rev. Lett. 2016. V. 116 (13) P. 135002.
7. Идельчик И.Е. Справочник по гидравлическим сопротивлениям. 1975. Москва: Машиностроение.
8. Rindt P. et al. // J. Nucl. Fusion. 2019. P. 15. https://doi.org/10.1088/1741-4326/ab0560
9. Nygren R.E., Tabarés F.L. // Nucl. Mater. Energy. 2016. V. 9. P. 6. https://doi.org/10.1016/j.nme.2016.08.008
10. Evtikhin A. et al. // J. Nucl. Mater. 1999. P. 271. https://doi.org/10.1016/S0022- 3115(98)00793-4
11. Evtikhin V.A. et al. // Fusion Energy. 1996. P. 659.
12. Vertkov A. et al. // Phys. At. Nucl. 2018. V. 81 (7). P. 1000.
13. Morgan T.W. et al. // Plasma Phys. Control. Fusion. 2018. V. 60 (1). P. 014025. https://doi.org/10.1088/1361-6587/aa86cd
14. Kurnaev V. et al. // J. Nucl. Mater. 2015. V. 463. P. 228. https://doi.org/10.1016/j.jnucmat.2014.12.076
15. Tulubayev Ye. et al. // Mater. Today. 2023. V. 81. P. 1209. https://doi.org/10.1016/j.matpr.2023.03.176
16. Vertkov A. et al. // Fusion Eng. Des. 2017. V. 117. P. 130. https://doi.org/10.1016/j.fusengdes.2017.01.041
17. Lyublinski I.E. et al. // J. Phys.: Conf. Ser. 2017. V. 891 (1). P. 012152.
18. Vertkov A.V. et al. // Phys. At. Nucl. 2020. V. 83 (7). P. 1. https://doi.org/10.1088/1742-6596/1370/1/012062
19. Mirnov S.V. et al. // J. Phys.: Conf. Ser. 2018. V. 1128. P. 012128
Review
For citations:
Tulubaev E.Yu., Kudiyarov V.N., Nikitenkov N.N., Tazhibaeva I.L., Vertkov A.V., Zharkov M.Yu., Ponkratov Yu.V., Gordienko Yu.N., Bochkov V.S. Method for Investigation of the Cooling Process of a Layout of a Lithium Divertor Module (LDM) under High Energy Loads. Nuclear Physics and Engineering. 2024;15(3):291-299. (In Russ.) https://doi.org/10.56304/S2079562923030351. EDN: VGPMIY