Preview

Nuclear Physics and Engineering

Advanced search

Features of Hydrogen Trapping under Electron Irradiation of Zirconium Alloys in Various Gaseous Ambient

https://doi.org/10.56304/S2079562923030132

EDN: CSEGSZ

Abstract

Hydrogen trapping under the irradiation of E110 and E635 alloys by electron flux (400 eV, 0.8 mA/cm2) in various oxygen- and hydrogen-containing gaseous ambient (Ar + O2 + H2; Ar + H2O) is studied in this work. The effect of surface temperature on hydrogenation of zirconium alloys under electron irradiation is discussed. It is shown that neither exposure nor electron irradiation in a gaseous ambient containing a mixture of H2 and O2 at T = 700 K for 20 h does not alternate the hydrogen level in the E110 alloy, whereas hydrogen partially escapes from the E635 alloy during the experiment. The amount of hydrogen in zirconium alloys after exposure to a H2O-containing gaseous ambient at the same temperature-time regime also changes insignificantly, however, if the alloys are irradiated with electrons under these conditions, the hydrogen content in them increases by 1.5–2 times. When the temperature of the samples is raised to 900 K, electron irradiation in the presence of water vapor, on the contrary, reduces hydrogen trapping in alloys E110 and E635, compared with a similar experiment without irradiation. It is concluded that electron irradiation affects the balance of surface reactions of formation of hydroxyls from adsorbed water molecules and inverse reactions of formation of water molecules from surface hydroxyls. The direction of the shift in the balance of these reactions depends on the surface temperature.

About the Authors

A. E. Evsin
Национальный исследовательский ядерный университет “МИФИ”
Russian Federation


I. D. Zhdanov
Национальный исследовательский ядерный университет “МИФИ”
Russian Federation


I. E. Kondratiev
Национальный исследовательский ядерный университет “МИФИ”
Russian Federation


N. O. Savvin
Национальный исследовательский ядерный университет “МИФИ”
Russian Federation


L. B. Begrambekov
Национальный исследовательский ядерный университет “МИФИ”
Russian Federation


References

1. Motta A.T., Couet A., Comstock R.J. // Ann. Rev. Mater. Res. 2015. V. 45. P. 311. https://doi.org/10.1146/annurev-matsci-070214-020951

2. Cox B. // J. Nucl. Mater. 2005. V. 336. P. 331. https://doi.org/10.1016/j.jnucmat.2004.09.029

3. Slobodyan M. // Nucl. Eng. Des. 2021. V. 382. P. 111364. https://doi.org/10.1016/j.nucengdes.2021.111364

4. Fromhold A.T. // Nature. 1963. V. 200 (4906). P. 559. https://doi.org/10.1038/200559a0

5. Beck R.B. // Appl. Surf. Sci. 1988. V. 35 (1). P. 76. https://doi.org/10.1016/0169-4332(88)90039-6

6. Carl D.A. et al. // J. Appl. Phys. 1991. V. 70 (6). P. 3301. https://doi.org/10.1063/1.349264

7. Larionov V. et al. // Condens. Matter. 2018. V. 3 (2). P. 17. https://doi.org/10.3390/condmat3020017

8. Tyurin Yu., Chernov I. // Int. J. Hydr. Energy. 2002. V. 27 (7-8). P. 829. https://doi.org/10.1016/S0360-3199(01)00153-7

9. Tyurin Y.I. et al. // Tech. Phys. 2011. V. 81 (1). P. 35. https://doi.org/10.1134/S1063784211010245

10. Kurnaev V. et al. // Fus. Eng. Des. 2013. V. 88 (6-8). P. 1414. https://doi.org/10.1016/j.fusengdes.2012.12.022

11. Voronov G.S. et al. // Plasma Phys. Rep. 2013. V. 39 (4). P. 277. https://doi.org/10.1134/S1063780X13040090

12. Evsin A.E. et al. // Vacuum. 2016. V. 129 (1). P. 183. https://doi.org/10.1016/j.vacuum.2016.01.022

13. Begrambekov L.B. et al. // Int. J. Hydrogen Energy. 2019. V. 44 (31). P. 17154. https://doi.org/10.1016/j.ijhydene.2019.04.198

14. Juillet C. et al. // Int. J. Hydrogen Energy. 2019. V. 44 (39). P. 21264. https://doi.org/10.1016/j.ijhydene.2019.06.034

15. Juillet C et al. // Corros. Sci. 2020. V. 173. P. 108762. https://doi.org/10.1016/j.corsci.2020.108762

16. Timkovskiy G.P. et al. // J. Phys. Conf. Ser. 2021. V. 2036 (1). P. 012033. https://doi.org/10.1088/1742-6596/2036/1/012033

17. Nakatsuji H. et al. // J. Phys. Chem. 1994. V. 98 (46). P. 11840. https://doi.org/10.1021/j100097a008


Review

For citations:


Evsin A.E., Zhdanov I.D., Kondratiev I.E., Savvin N.O., Begrambekov L.B. Features of Hydrogen Trapping under Electron Irradiation of Zirconium Alloys in Various Gaseous Ambient. Nuclear Physics and Engineering. 2024;15(3):282-290. (In Russ.) https://doi.org/10.56304/S2079562923030132. EDN: CSEGSZ

Views: 19


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)