Features of Hydrogen Trapping under Electron Irradiation of Zirconium Alloys in Various Gaseous Ambient
https://doi.org/10.56304/S2079562923030132
EDN: CSEGSZ
Abstract
Hydrogen trapping under the irradiation of E110 and E635 alloys by electron flux (400 eV, 0.8 mA/cm2) in various oxygen- and hydrogen-containing gaseous ambient (Ar + O2 + H2; Ar + H2O) is studied in this work. The effect of surface temperature on hydrogenation of zirconium alloys under electron irradiation is discussed. It is shown that neither exposure nor electron irradiation in a gaseous ambient containing a mixture of H2 and O2 at T = 700 K for 20 h does not alternate the hydrogen level in the E110 alloy, whereas hydrogen partially escapes from the E635 alloy during the experiment. The amount of hydrogen in zirconium alloys after exposure to a H2O-containing gaseous ambient at the same temperature-time regime also changes insignificantly, however, if the alloys are irradiated with electrons under these conditions, the hydrogen content in them increases by 1.5–2 times. When the temperature of the samples is raised to 900 K, electron irradiation in the presence of water vapor, on the contrary, reduces hydrogen trapping in alloys E110 and E635, compared with a similar experiment without irradiation. It is concluded that electron irradiation affects the balance of surface reactions of formation of hydroxyls from adsorbed water molecules and inverse reactions of formation of water molecules from surface hydroxyls. The direction of the shift in the balance of these reactions depends on the surface temperature.
About the Authors
A. E. EvsinRussian Federation
I. D. Zhdanov
Russian Federation
I. E. Kondratiev
Russian Federation
N. O. Savvin
Russian Federation
L. B. Begrambekov
Russian Federation
References
1. Motta A.T., Couet A., Comstock R.J. // Ann. Rev. Mater. Res. 2015. V. 45. P. 311. https://doi.org/10.1146/annurev-matsci-070214-020951
2. Cox B. // J. Nucl. Mater. 2005. V. 336. P. 331. https://doi.org/10.1016/j.jnucmat.2004.09.029
3. Slobodyan M. // Nucl. Eng. Des. 2021. V. 382. P. 111364. https://doi.org/10.1016/j.nucengdes.2021.111364
4. Fromhold A.T. // Nature. 1963. V. 200 (4906). P. 559. https://doi.org/10.1038/200559a0
5. Beck R.B. // Appl. Surf. Sci. 1988. V. 35 (1). P. 76. https://doi.org/10.1016/0169-4332(88)90039-6
6. Carl D.A. et al. // J. Appl. Phys. 1991. V. 70 (6). P. 3301. https://doi.org/10.1063/1.349264
7. Larionov V. et al. // Condens. Matter. 2018. V. 3 (2). P. 17. https://doi.org/10.3390/condmat3020017
8. Tyurin Yu., Chernov I. // Int. J. Hydr. Energy. 2002. V. 27 (7-8). P. 829. https://doi.org/10.1016/S0360-3199(01)00153-7
9. Tyurin Y.I. et al. // Tech. Phys. 2011. V. 81 (1). P. 35. https://doi.org/10.1134/S1063784211010245
10. Kurnaev V. et al. // Fus. Eng. Des. 2013. V. 88 (6-8). P. 1414. https://doi.org/10.1016/j.fusengdes.2012.12.022
11. Voronov G.S. et al. // Plasma Phys. Rep. 2013. V. 39 (4). P. 277. https://doi.org/10.1134/S1063780X13040090
12. Evsin A.E. et al. // Vacuum. 2016. V. 129 (1). P. 183. https://doi.org/10.1016/j.vacuum.2016.01.022
13. Begrambekov L.B. et al. // Int. J. Hydrogen Energy. 2019. V. 44 (31). P. 17154. https://doi.org/10.1016/j.ijhydene.2019.04.198
14. Juillet C. et al. // Int. J. Hydrogen Energy. 2019. V. 44 (39). P. 21264. https://doi.org/10.1016/j.ijhydene.2019.06.034
15. Juillet C et al. // Corros. Sci. 2020. V. 173. P. 108762. https://doi.org/10.1016/j.corsci.2020.108762
16. Timkovskiy G.P. et al. // J. Phys. Conf. Ser. 2021. V. 2036 (1). P. 012033. https://doi.org/10.1088/1742-6596/2036/1/012033
17. Nakatsuji H. et al. // J. Phys. Chem. 1994. V. 98 (46). P. 11840. https://doi.org/10.1021/j100097a008
Review
For citations:
Evsin A.E., Zhdanov I.D., Kondratiev I.E., Savvin N.O., Begrambekov L.B. Features of Hydrogen Trapping under Electron Irradiation of Zirconium Alloys in Various Gaseous Ambient. Nuclear Physics and Engineering. 2024;15(3):282-290. (In Russ.) https://doi.org/10.56304/S2079562923030132. EDN: CSEGSZ