Thermal Stability of Ion-Induced Cone-Shaped Relief on the Surface and Microstructure of Ultrafine-Grained Tungsten Obtained by Deformation Nanostructuring
https://doi.org/10.56304/S2079562923030193
EDN: PBYJGZ
Abstract
The results of the study of the effect of deformation nanostructuring on the formation of a cone-shaped relief on the surface of ultrafine-grained tungsten with an average grain size of 300 nm under high-fluence irradiation with argon ions with an energy of 30 keV are presented. The thermal stability of the resulting cone-shaped relief on the surface and the ultrafine-grained structure in the volume of tungsten under heating up to 1400°C has been studied. Changes of microhardness were measured.
About the Authors
R. Kh. KhisamovRussian Federation
N. N. Andrianova
Russian Federation
A. M. Borisov
Russian Federation
M. A. Ovchinnikov
Russian Federation
R. R. Timiryaev
Russian Federation
I. I. Musabirov
Russian Federation
R. R. Mulyukov
Russian Federation
References
1. Philips V. // J. Nucl. Mater. 2011. V. 415. P. S2. https://doi.org/10.1016/j.jnucmat.2011.01.110
2. Jiang W. et al. // J. Nucl. Mater. 2021. V. 550. P. 152905. https://doi.org/10.1016/j.jnucmat.2021.152905
3. Martynenko Yu.V., Nagel M.Yu. // Plasma Phys. Rep. 2012. V. 38. P. 996. https://doi.org/10.1134/S1063780X12110074
4. Kajita S., Kawaguchi S., Ohno N., Yoshida N. // Sci. Rep. 2018. V. 8 (1). P. 56. https://doi.org/10.1038/s41598-017-18476-7
5. Ogorodnikova O.V et al. // J. Nucl. Mater. 2022. V. 558. P. 153328. https://doi.org/10.1016/j.jnucmat.2021.153328
6. Zhang R. et al. // Nucl. Mater. Energy. 2022. V. 31. P. 101178. https://doi.org/10.1016/j.nme.2022.101178
7. Litnovsky A. et al. // Plasma Phys. Control. Fusion. 2017. V. 59. P. 064003. https://doi.org/10.1088/1361-6587/aa6948
8. Harutyunyan Z. et al. // J. Nucl. Mater. 2023. V. 578. P. 154353. https://doi.org/10.1016/j.jnucmat.2023.154353
9. Efe M et al. // Scr. Mater. 2014. V. 70. P. 31. https://doi.org/10.1016/j.scriptamat.2013.08.013
10. Wu Y.C. et al. // J. All. Com. 2019. V. 779. P. 926. https://doi.org/10.1016/j.jallcom.2018.11.279
11. Chen Z. et al. // Acta Mater. 2018. V. 147. P. 100. https://doi.org/10.1016/j.actamat.2018.01.015
12. Wurmshuber M. et al. // Int. J. Refract. Met. Hard Mater. 2023. V. 111. P. 106125. https://doi.org/10.1016/j.ijrmhm.2023.106125
13. El-Atwani O. et al. // Mater. Res. Lett. 2017. V. 5 (5). P. 343. https://doi.org/10.1080/21663831.2017.1292326
14. El-Atwani O. et al. // Scr. Mater. 2020. V. 180. P. 6. https://doi.org/10.1016/j.scriptamat.2020.01.013
15. Auciello O. // J. Vac. Sci. Technol. 1981. V. 19 (4). P. 841. https://doi.org/10.1116/1.571224
16. Carter G., Nobes M.J., Whitton J.L. // Appl. Phys. A. 1985. V. 38. P. 77. https://doi.org/10.1007/BF00620458
17. Was. G.S. // Prog. Surf. Sci. 1989. V. 32 (3-4). P. 211. https://doi.org/10.1016/0079-6816(89)90005-1
18. Begrambekov L.B., Zakharov A.M., Telkovsky V.G. // Nucl. Instrum. Meth. Phys. Res., Sect. B. 1996. V. 115 (1-4). P. 456. https://doi.org/10.1016/0168-583X(95)01514-0
19. Qin W. et al. // Acta Mater. 2018. V. 153. P. 147. https://doi.org/10.1016/j.actamat.2018.04.048
20. Lopez-Cazalilla A. et al. // Phys. Rev. Mat. 2022. V. 6. P. 075402. https://doi.org/10.1103/PhysRevMaterials.6.075402 ЯДЕРНАЯ ФИЗИКА И ИНЖИНИРИНГ том 15 № 3 2024ТЕРМИЧЕСКАЯ СТАБИЛЬНОСТЬ 239
21. Borisov A.M., Mashkova E.S., Ovchinnikov M.A., Khisamov R.K., Mulyukov R.R. // J. Surf. Inv. 2021. V. 15. P. S66. https://doi.org/10.31857/S1028096022030062
22. Borisov A.M. et al. // Tech. Phys. Lett. 2022. V. 48 (6). P. 55. https://doi.org/10.21883/TPL.2022.06.53792.19146
23. Borisov A.M. et al. // J. Surf. Inv. 2023. V. 17. P. 54. https://doi.org/10.31857/S1028096023010077
24. Nazarov A.A., Mulyukov R.R. Nanostructred Materials. In: Handbook of NanoScience. Engineering and Technology. 2002. Boca Raton: CRC Press. https://doi.org/10.1201/9781420040623
25. Yusupova N.R., Krylova K.A., Mulyukov R.R. // Lett. Mater. 2021. V. 11. No. 4. P. 382–385. https://doi.org/10.22226/2410-3535-2021-4-382-385
26. Markushev M.V. et al. // Lett. Mater. 2022. V. 12 (4s). P. 463. https://doi.org/10.22226/2410-3535-2022-4-463-468
27. Mashkova E.S., Molchanov V.A. Medium-Energy Ion Reflection from Solids. 1985. Amsterdam: North-Holland.
28. Mulyukov R.R. et al. // JETP Lett. 2000. V. 72. P. 257. https://doi.org/10.1134/1.1324023
29. Mulyukov R.R. // J. Vac. Sci. Technol. B. 2006. V. 24. P. 1061. https://doi.org/10.1116/1.2174024
30. Zhang Y. et al. // Mater. Sci. Forum. 2008. V. 584. P. 1000. https://doi.org/10.4028/www.scientific.net/MSF.584586.1000
31. Muller E.W. // Zeitschr. Phys. 1937. V. 106 (5-6). P. 541. https://doi.org/10.1007/BF01339895
32. Farrell K., Schaffhauser A.C., Stiegler J.O. // J. Less Common Metals. 1967. V. 13. P. 141. https://doi.org/10.1016/0022-5088(67)90177-4
33. Vyacheslavov L.N. et al. // Phys. Scr. 2018. V. 93. P. 035602. https://doi.org/10.1088/1402-4896/aaa119
Review
For citations:
Khisamov R.Kh., Andrianova N.N., Borisov A.M., Ovchinnikov M.A., Timiryaev R.R., Musabirov I.I., Mulyukov R.R. Thermal Stability of Ion-Induced Cone-Shaped Relief on the Surface and Microstructure of Ultrafine-Grained Tungsten Obtained by Deformation Nanostructuring. Nuclear Physics and Engineering. 2024;15(3):232-239. (In Russ.) https://doi.org/10.56304/S2079562923030193. EDN: PBYJGZ