Preview

Nuclear Physics and Engineering

Advanced search

Thermal Stability of Ion-Induced Cone-Shaped Relief on the Surface and Microstructure of Ultrafine-Grained Tungsten Obtained by Deformation Nanostructuring

https://doi.org/10.56304/S2079562923030193

EDN: PBYJGZ

Abstract

The results of the study of the effect of deformation nanostructuring on the formation of a cone-shaped relief on the surface of ultrafine-grained tungsten with an average grain size of 300 nm under high-fluence irradiation with argon ions with an energy of 30 keV are presented. The thermal stability of the resulting cone-shaped relief on the surface and the ultrafine-grained structure in the volume of tungsten under heating up to 1400°C has been studied. Changes of microhardness were measured.

About the Authors

R. Kh. Khisamov
Institute for Metals Superplasticity Problems of the Russian Academy of Sciences
Russian Federation


N. N. Andrianova
Moscow Aviation Institute (National Research University); Skobeltsyn Institute of Nuclear Physics, Moscow State University
Russian Federation


A. M. Borisov
Moscow Aviation Institute (National Research University); Skobeltsyn Institute of Nuclear Physics, Moscow State University; Moscow State Technological University “Stankin”
Russian Federation


M. A. Ovchinnikov
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Russian Federation


R. R. Timiryaev
Institute for Metals Superplasticity Problems of the Russian Academy of Sciences
Russian Federation


I. I. Musabirov
Institute for Metals Superplasticity Problems of the Russian Academy of Sciences
Russian Federation


R. R. Mulyukov
Institute for Metals Superplasticity Problems of the Russian Academy of Sciences
Russian Federation


References

1. Philips V. // J. Nucl. Mater. 2011. V. 415. P. S2. https://doi.org/10.1016/j.jnucmat.2011.01.110

2. Jiang W. et al. // J. Nucl. Mater. 2021. V. 550. P. 152905. https://doi.org/10.1016/j.jnucmat.2021.152905

3. Martynenko Yu.V., Nagel M.Yu. // Plasma Phys. Rep. 2012. V. 38. P. 996. https://doi.org/10.1134/S1063780X12110074

4. Kajita S., Kawaguchi S., Ohno N., Yoshida N. // Sci. Rep. 2018. V. 8 (1). P. 56. https://doi.org/10.1038/s41598-017-18476-7

5. Ogorodnikova O.V et al. // J. Nucl. Mater. 2022. V. 558. P. 153328. https://doi.org/10.1016/j.jnucmat.2021.153328

6. Zhang R. et al. // Nucl. Mater. Energy. 2022. V. 31. P. 101178. https://doi.org/10.1016/j.nme.2022.101178

7. Litnovsky A. et al. // Plasma Phys. Control. Fusion. 2017. V. 59. P. 064003. https://doi.org/10.1088/1361-6587/aa6948

8. Harutyunyan Z. et al. // J. Nucl. Mater. 2023. V. 578. P. 154353. https://doi.org/10.1016/j.jnucmat.2023.154353

9. Efe M et al. // Scr. Mater. 2014. V. 70. P. 31. https://doi.org/10.1016/j.scriptamat.2013.08.013

10. Wu Y.C. et al. // J. All. Com. 2019. V. 779. P. 926. https://doi.org/10.1016/j.jallcom.2018.11.279

11. Chen Z. et al. // Acta Mater. 2018. V. 147. P. 100. https://doi.org/10.1016/j.actamat.2018.01.015

12. Wurmshuber M. et al. // Int. J. Refract. Met. Hard Mater. 2023. V. 111. P. 106125. https://doi.org/10.1016/j.ijrmhm.2023.106125

13. El-Atwani O. et al. // Mater. Res. Lett. 2017. V. 5 (5). P. 343. https://doi.org/10.1080/21663831.2017.1292326

14. El-Atwani O. et al. // Scr. Mater. 2020. V. 180. P. 6. https://doi.org/10.1016/j.scriptamat.2020.01.013

15. Auciello O. // J. Vac. Sci. Technol. 1981. V. 19 (4). P. 841. https://doi.org/10.1116/1.571224

16. Carter G., Nobes M.J., Whitton J.L. // Appl. Phys. A. 1985. V. 38. P. 77. https://doi.org/10.1007/BF00620458

17. Was. G.S. // Prog. Surf. Sci. 1989. V. 32 (3-4). P. 211. https://doi.org/10.1016/0079-6816(89)90005-1

18. Begrambekov L.B., Zakharov A.M., Telkovsky V.G. // Nucl. Instrum. Meth. Phys. Res., Sect. B. 1996. V. 115 (1-4). P. 456. https://doi.org/10.1016/0168-583X(95)01514-0

19. Qin W. et al. // Acta Mater. 2018. V. 153. P. 147. https://doi.org/10.1016/j.actamat.2018.04.048

20. Lopez-Cazalilla A. et al. // Phys. Rev. Mat. 2022. V. 6. P. 075402. https://doi.org/10.1103/PhysRevMaterials.6.075402 ЯДЕРНАЯ ФИЗИКА И ИНЖИНИРИНГ том 15 № 3 2024ТЕРМИЧЕСКАЯ СТАБИЛЬНОСТЬ 239

21. Borisov A.M., Mashkova E.S., Ovchinnikov M.A., Khisamov R.K., Mulyukov R.R. // J. Surf. Inv. 2021. V. 15. P. S66. https://doi.org/10.31857/S1028096022030062

22. Borisov A.M. et al. // Tech. Phys. Lett. 2022. V. 48 (6). P. 55. https://doi.org/10.21883/TPL.2022.06.53792.19146

23. Borisov A.M. et al. // J. Surf. Inv. 2023. V. 17. P. 54. https://doi.org/10.31857/S1028096023010077

24. Nazarov A.A., Mulyukov R.R. Nanostructred Materials. In: Handbook of NanoScience. Engineering and Technology. 2002. Boca Raton: CRC Press. https://doi.org/10.1201/9781420040623

25. Yusupova N.R., Krylova K.A., Mulyukov R.R. // Lett. Mater. 2021. V. 11. No. 4. P. 382–385. https://doi.org/10.22226/2410-3535-2021-4-382-385

26. Markushev M.V. et al. // Lett. Mater. 2022. V. 12 (4s). P. 463. https://doi.org/10.22226/2410-3535-2022-4-463-468

27. Mashkova E.S., Molchanov V.A. Medium-Energy Ion Reflection from Solids. 1985. Amsterdam: North-Holland.

28. Mulyukov R.R. et al. // JETP Lett. 2000. V. 72. P. 257. https://doi.org/10.1134/1.1324023

29. Mulyukov R.R. // J. Vac. Sci. Technol. B. 2006. V. 24. P. 1061. https://doi.org/10.1116/1.2174024

30. Zhang Y. et al. // Mater. Sci. Forum. 2008. V. 584. P. 1000. https://doi.org/10.4028/www.scientific.net/MSF.584586.1000

31. Muller E.W. // Zeitschr. Phys. 1937. V. 106 (5-6). P. 541. https://doi.org/10.1007/BF01339895

32. Farrell K., Schaffhauser A.C., Stiegler J.O. // J. Less Common Metals. 1967. V. 13. P. 141. https://doi.org/10.1016/0022-5088(67)90177-4

33. Vyacheslavov L.N. et al. // Phys. Scr. 2018. V. 93. P. 035602. https://doi.org/10.1088/1402-4896/aaa119


Review

For citations:


Khisamov R.Kh., Andrianova N.N., Borisov A.M., Ovchinnikov M.A., Timiryaev R.R., Musabirov I.I., Mulyukov R.R. Thermal Stability of Ion-Induced Cone-Shaped Relief on the Surface and Microstructure of Ultrafine-Grained Tungsten Obtained by Deformation Nanostructuring. Nuclear Physics and Engineering. 2024;15(3):232-239. (In Russ.) https://doi.org/10.56304/S2079562923030193. EDN: PBYJGZ

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)