Preview

Nuclear Physics and Engineering

Advanced search

Modification of Carbon Fiber Surface under Plasma Ion Irradiation with Energies from Hundreds of eV to Tens of keV

https://doi.org/10.56304/S2079562923030028

EDN: XTUWJD

Abstract

The effect of high-dose, with a fluence >1018 cm–2, irradiation by hydrogen, helium and neon ions with energies from several hundred eV to 30 keV on the surface morphology of polyacrylonitrile (PAN) based carbon fibers has been experimentally studied. Magnetron sputtering with ions of low, less than 1 keV, energies of carbon fibers leads to the formation of a whisker-like relief on the surface. Such relief at irradiation with 30 keV ions is formed at the initial stage of high dose irradiation at fluences ~1016 cm–2. At higher fluences >1018 cm–2 depending on the sort of ions submicron longitudinal or transverse corrugations are formed. The obtained results are discussed within the framework of existing models of formation of ion-induced morphological elements on the surface of graphite-like materials.

About the Authors

N. N. Andrianova
Skobeltsyn Institute of Nuclear Physics, Moscow State University; Moscow Aviation Institute (National Research University)
Russian Federation


A. M. Borisov
Skobeltsyn Institute of Nuclear Physics, Moscow State University; Moscow Aviation Institute (National Research University); Moscow State Technological University “STANKIN”
Russian Federation


E. A. Vorobyeva
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Russian Federation


M. A. Ovchinnikov
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Russian Federation


V. V. Sleptsov
Moscow Aviation Institute (National Research University)
Russian Federation


R. A. Tsyrkov
Moscow Aviation Institute (National Research University)
Russian Federation


References

1. Roth J. // Suppl. J. Nucl. Mater. 1991. V. 1. P. 63.

2. Was G.S. Fundamentals of Radiation Materials Science. 2nd Ed. 2014. New York: Springer-Verlag.

3. Begrambekov L.B., Zakharov A.M., Telkovsky V.G. // Nucl. Instrum. Meth. Phys. Res., Sect. B. 1996. V. 115 (1-4). P. 456.

4. Virgil’ev Yu.S., Kalyagina I.P. // Inorg. Mater. 2004. V. 40. P. S33.

5. Burchell T.D. // MRS Bull. 1997. V. 22 (4). P. 29.

6. Liu D. et al. // Carbon. 2021. V. 173. P. 215.

7. Hinks J.A. et al. // Carbon. 2014. V. 68. P. 273.

8. Puntakov N.A., Begrambekov L.B., Grunin A.V. // J. Phys.: Conf. Ser. 2020. V. 1713. P. 012037.

9. Andrianova N.N. et al. //Horizons in World Physics. 2013. V. 280. P. 171.

10. Bacon D.J., Rao A.S. // J. Nucl. Mater. 1980. V. 91. P. 178.

11. Tanabe T. // Phys. Scr. 1996. V. T64. P. 7.

12. Annis B.K., Pedraza D.F., Withrow S.P. // J. Mater. Res. 1993. V. 8. P. 2587.

13. Floro J.A., Rossnagel S.M., Robinson R.S. // J. Vac. Sci. Technol. A. 1983. V. 1 (3). P. 1398.

14. Van Vechten J. A. et al. // J. Crys. Growth. 1987. V. 82 (3). P. 289.

15. Habenicht S. // Phys. Rev. B. 2001. V. 63 (12). P. 125419.

16. Рогов А.В. и др. // Вопросы атомной науки и техники. Серия: Термоядерный синтез. 2011. № 4. С. 65.

17. Andrianova N.N. et al. // J. Surf. Investig. X-Ray, Synch. Neutron Tech. 2008. V. 2 (3). P. 376.

18. Andrianova N.N. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84 (6). P. 707.

19. Andrianova N.N. et al. // Vacuum. 2021. V. 188. P. 110177.

20. Andrianova N.N. et al. // J. Phys.: Conf. Ser. 2019. V. 1396. P. 012003.

21. Mashkova E.S., Molchanov V.A. Medium-Energy Ion Reflection from Solids. 1985. Amsterdam: North-Holland.

22. Ehrhart P., Schilling W., Ullmaier H. Radiation Damage in Crystals. Encycl. Appl. Phys. 2003. Weinheim: Wiley-VCH Verlag GmbH & Co.

23. Ziegler J.F., Biersack J.P. http://www.srim.org. SRIM. 2013.

24. Carter G., Webb R., Collins R. // Rad. Eff. 1978. V. 37. P. 21.

25. Andrianova N.N. et al. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2013. V. 315. P. 117.

26. Ferrari A.C., Robertson J. // Phys. Rev. B. 2000. V. 61 (20). P. 14095.

27. Pimenta M.A. et al. // Phys. Chem. Chem. Phys. 2007. V. 9 (11). P. 1276.

28. Niwase K. // Int. J. Spectrosc. 2012. P. 197609.

29. Soshnikov I.P. et al. // Tech. Phys. 2001. V. 46. 892.

30. Dresselhaus M.S. et al. Graphite Fibers and Filaments. 1988. Springer-Verlag.

31. Gibson R.F. // Compos. Struct. 2010. VV. 92 (12). P. 2793.

32. Romanov V.S. et al. // Carbon. 2015. V. 82. P. 184.

33. Sager R.J. et al. // Compos. Sci. Technol. 2009. V. 69. P. 898.

34. Song Q. et al. // Carbon 2012. V. 50. P. 3949.

35. Andrianova N.N. et al. // J. Phys.: Conf. Ser. 2019. V. 1313. P. 012001.


Review

For citations:


Andrianova N.N., Borisov A.M., Vorobyeva E.A., Ovchinnikov M.A., Sleptsov V.V., Tsyrkov R.A. Modification of Carbon Fiber Surface under Plasma Ion Irradiation with Energies from Hundreds of eV to Tens of keV. Nuclear Physics and Engineering. 2024;15(3):224-231. (In Russ.) https://doi.org/10.56304/S2079562923030028. EDN: XTUWJD

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)