Comparison of Deuterium Retention in Tungsten Films of Various Thickness
https://doi.org/10.56304/S207956292303020X
EDN: WFTDLV
Abstract
A comparative study of the deuterium content in tungsten-deuterium layers 50, 250, and 750 nm thick co-deposited from a magnetron discharge plasma on molybdenum substrates has been carried out. The measurements were carried out by in vacuo thermal desorption spectroscopy without contact with the atmosphere. Simulation of experimental data in the TMAP7 code has been carried out; concentrations and energies of traps have been obtained at which the best agreement with experiment is achieved. The content of deuterium in the films deposited at a temperature of ~100°C was 3–5 at %. It has been shown that the film thickness does not significantly affect the characteristics of deuterium retention trapping centers, although the shape of the spectra for the thickest films is slightly different.
About the Authors
S. A. KratRussian Federation
A. S. Prishvitsyn
Russian Federation
I. A. Sorokin
Russian Federation
E. A. Fefelova
Russian Federation
Yu. M. Gasparyan
Russian Federation
A. A. Pisarev
Russian Federation
References
1. Roth J. et al. // J. Nucl. Mater. V. 390-391. P. 1. https://doi.org/10.1016/j.jnucmat.2009.01.037
2. Widdowson A. et al. // Phys. Scr. 2020. V. 2020 (T171). P. 014051. https://doi.org/10.1088/1402-4896/ab5350
3. Schmid K. et al. // J. Nucl. Mater. 2015. V. 463. P. 66. https://doi.org/10.1016/j.jnucmat.2014.11.109
4. Krat S.A. et al. // J. Instrum. 2020. V. 15 (1). P. P01011. https://doi.org/10.1088/1748-0221/15/01/P01011
5. Krat, S. et al. // J. Nucl. Mater. 2023. V. 575. P. 154228. https://doi.org/10.1016/j.jnucmat.2022.154228
6. Pazzaglia A. et al. // Mater. Charact. V. 153. P. 92. https://doi.org/10.1016/j.matchar.2019.04.030
7. Longhurst G.R. TMAP7 Manual. INEEL/EXT-0402352. 2006. Idaho Falls: Idaho National Engineering and Environmental Laboratory. Bechtel BWXT Idaho, LLC.
8. Holzner G. et al. // Phys. Scr. 2020. V. 2020 (T171). P. 014034. https://doi.org/10.1088/1402-4896/ab4b42
9. Ogorodnikova O.V. // J. Nucl. Mater. 2019. V. 522. P. 74. https://doi.org/10.1016/j.jnucmat.2019.05.017
10. Hooke R., Jeeves T.A. // J. ACM. 1961. V. 8 (2). P. 212. https://doi.org/10.1145/321062.321069
11. Krat S. et al. // Vacuum. 2018. V. 149. P. 23. https://doi.org/10.1016/j.vacuum.2017.12.004
12. Zibrov M. et al. // J. Nucl. Mater. 2016. V. 477. P. 292. https://doi.org/10.1016/j.jnucmat.2016.04.052
13. Ogorodnikova O.V., Roth J., Mayer M. // J. Appl. Phys. 2008. V. 103. P. 034902. https://doi.org/10.1063/1.2828139
14. Rusinov A et al. // J. Nucl. Mater. 2011. V. 415. P. S645. https://doi.org/10.1016/j.jnucmat.2010.10.069
15. Eleveld H., van Veen A. // J. Nucl. Mater. 1992. V. 191. P. 433. https://doi.org/10.1016/S0022-3115(09)80082-2
16. Zibrov M. et al. // Phys. Procedia. 2015. V. 71. P. 83. https://doi.org/10.1016/j.phpro.2015.08.318
17. Pisarev A.A., Varava A.V., Zhdanov S.K. // J. Nucl. Mater. 1995. V. 220. P. 926. https://doi.org/10.1016/0022-3115(94)00613-X
Review
For citations:
Krat S.A., Prishvitsyn A.S., Sorokin I.A., Fefelova E.A., Gasparyan Yu.M., Pisarev A.A. Comparison of Deuterium Retention in Tungsten Films of Various Thickness. Nuclear Physics and Engineering. 2024;15(3):218-223. (In Russ.) https://doi.org/10.56304/S207956292303020X. EDN: WFTDLV