Preview

Nuclear Physics and Engineering

Advanced search

Electronic and Charge Properties of Titanium 2–4 nm Nanoclusters

https://doi.org/10.56304/S2079562923010165

Abstract

In this work, titanium nanoclusters with sizes of 2 and 4 nm are studied by semi-empirical calculation methods. For the detached and contacting nanoclusters the optimal geometry, energy and orbitals are obtained, structural, electronic, and charge properties are studied. It is shown that the highest electron density for both all valence and d-valence states is localized near the surface of nanoclusters with the highest curvature. The minimal local density of those states is localized on atoms near the surfaces of nanoclusters with the highest curvature. With an increase in the size of the cluster, the binding energy per atom increases. For detached cluster it is slightly higher than for a system of contacting ones. The density of electronic states of the system of 2 nm nanoclusters in contact does not depend on the type of their contact, and there are more regular zones in the 4 eV-surrounding of Fermi energy, then in the detached 2 nm nanoclusters.

About the Authors

U. N. Kurelchuk
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
Russian Federation


O. S. Vasilyev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
Russian Federation


P. V. Borisyuk
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
Russian Federation


References

1. <em>Bricchi B.R. et al.</em> // ACS App. Mater. Interfaces. 2022. V. 14 (16). P. 18453–18463.

2. <em>Rashidi A. et al.</em> // Nanotechnology. 2020. V. 31. P. 33570.

3. <em>Chen M., Chen X., Yan H., Zhou P.</em> // Physica E Low Dimens. Syst. Nanostruct. 2021. V. 126. P. 114471.

4. <em>Kutrovskaya S., Kucherik A., Osipov A., Samyshkin V., Istratov A., Kavokin A.V.</em> // Sci. Rep. 2019. V. 9. P. 7023.

5. <em>Hiratani M. et al.</em> // Appl. Phys. Lett. 2002. V. 81 (13). P. 2433.

6. <em>Meng Z. et al.</em> // Chem. Rev. 2019. V. 119 (1). P. 478.

7. <em>Tran R., Xu Z., Radhakrishnan B., Winston D., Sun W., Persson K.A., Ong Sh.P.</em> // Sci. Data. 2016. V. 3. P. 160080.

8. <em>Wen M. et al.</em> // Model. Simul. Mater. Sci. Eng. 2015. V. 23. P. 074008.

9. <em>Luschtinetz R. et al.</em> // J. Phys. Chem. C. 2009. V. 113 (14). P. 5730.

10. <em>Thompson A.P. et al.</em> // Comput. Phys. Commun. 2022. V. 271. P. 108171.

11. <em>Barca G.M.J. et al.</em> // J. Chem. Phys. 2020. V. 152. P. 154102.

12. <em>Bode B.M., Gordon M.S.</em> // J. Mol. Graph. Model. 1999. V. 16. P. 133–138.


Review

For citations:


Kurelchuk U.N., Vasilyev O.S., Borisyuk P.V. Electronic and Charge Properties of Titanium 2–4 nm Nanoclusters. Nuclear Physics and Engineering. 2024;15(2):201-206. (In Russ.) https://doi.org/10.56304/S2079562923010165

Views: 24


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)