Magnetization and Critical Current of a Weakly Anisotropic HTS with Columnar Pinning Centers
https://doi.org/10.56304/S2079562923010177
Abstract
The effect of columnar pinning centers on the current-voltage characteristic, the critical current, and the shape of the magnetization curve has been studied by the Monte Carlo method in the framework of a three-dimensional model of a layered HTS. It has been shown that the presence of a weak intrinsic pinning does not qualitatively change the calculation results. It has been shown that the presence of a periodic lattice of pinning centers leads to an avalanche-like penetration of vortices at a certain threshold field and the existence of vortex-free regions at a lower field. This difference has been demonstrated on the magnetization curves. These effects have not been observed for a quasi-periodic lattice of pinning centers.
About the Authors
A. N. MaksimovaRussian Federation
V. A. Kashurnikov
Russian Federation
I. A. Rudnev
Russian Federation
A. N. Moroz
Russian Federation
References
1. <em>Ryu S., Doniach S., Deutscher G., Kapitulnik A.</em> // Phys. Rev. Lett. 1992. V. 68. P. 710.
2. <em>Gracheva M., Katargin M., Kashurnikov V., Rudnev I.</em> // Low Temp. Phys. 1997. V. 23. P. 863.
3. <em>Olson C., Zimanyi G., Kolton A., Gronbech-Jensen N.</em> // Phys. Rev. Lett. 2000. V. 85. P. 5416.
4. <em>Fily Y., Olive E., Di Scala N., Soret J.</em> // Phys. Rev. B. 2010. V. 82. P. 134519.
5. <em>Sadovskyy I., Koshelev A., Phillips C.L., Karpeyev D.A., Glatz A.</em> // J. Comput. Phys. 2015. V. 294. P. 639.
6. <em>Lara A., Gonz’alez-Ruano C., Aliev F.G.</em> // Low Temp. Phys. 2020. V. 46. P. 316.
7. <em>Fischer D.X., Prokopec R., Emhofer J., Eisterer M.</em> // Supercond. Sci. Technol. 2018. V. 31. P. 044006.
8. <em>Aichner B., Müller B.M., Karrer M., et al.</em> // ACS Appl. Nano Mater. 2019. V. 2. P. 5108.
9. <em>Jia Y., LeRoux M., Miller D., et al.</em> // Appl. Phys. Lett. 2013. V. 103. P. 122601.
10. <em>Lamas J.S., Baldan C.A., Shigue C.Y., Silhanek A., Moshchalkov V.</em> // IEEE Trans. Appl. Supercond. 2011. V. 21. P. 3398.
11. <em>Song W., Pei X., Alafnan H., Xi J., Zeng X., Yazdani-Asrami M., Xiang B., Liu Z.</em> // IEEE Trans. Appl. Supercond. 2021. V. 31. P. 1.
12. <em>Kalsi S.S., Malozemoff A.</em> // Proc. IEEE Power Engineering Society General Meeting. P. 1426–1430.
13. <em>Lawrence W., Doniach S.</em> // Proc. 12th International Conference on Low Temperature Physics. P. 361.
14. <em>Kashurnikov V., Maksimova A., Rudnev I., Odintsov D.</em> // J. Phys.: Conf. Ser. 2019. V. 1238. P. 012016.
15. <em>Maksimova A.N., Kashurnikov V.A., Moroz A.N., Rudnev I.</em> // Phys. Solid State. 2021. V. 63. P. 64.
16. <em>Tyagi S., Goldschmidt Y.Y.</em> // Phys. Rev. B. 2004. V. 70. P. 024501.
17. <em>Goldschmidt Y.Y., Tyagi S.</em> // Phys. Rev. B. 2005. V. 71. P. 014503.
Review
For citations:
Maksimova A.N., Kashurnikov V.A., Rudnev I.A., Moroz A.N. Magnetization and Critical Current of a Weakly Anisotropic HTS with Columnar Pinning Centers. Nuclear Physics and Engineering. 2024;15(2):139-145. (In Russ.) https://doi.org/10.56304/S2079562923010177