Preview

Nuclear Physics and Engineering

Advanced search

Magnetization and Critical Current of a Weakly Anisotropic HTS with Columnar Pinning Centers

https://doi.org/10.56304/S2079562923010177

Abstract

The effect of columnar pinning centers on the current-voltage characteristic, the critical current, and the shape of the magnetization curve has been studied by the Monte Carlo method in the framework of a three-dimensional model of a layered HTS. It has been shown that the presence of a weak intrinsic pinning does not qualitatively change the calculation results. It has been shown that the presence of a periodic lattice of pinning centers leads to an avalanche-like penetration of vortices at a certain threshold field and the existence of vortex-free regions at a lower field. This difference has been demonstrated on the magnetization curves. These effects have not been observed for a quasi-periodic lattice of pinning centers.

About the Authors

A. N. Maksimova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
Russian Federation


V. A. Kashurnikov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
Russian Federation


I. A. Rudnev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
Russian Federation


A. N. Moroz
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
Russian Federation


References

1. <em>Ryu S., Doniach S., Deutscher G., Kapitulnik A.</em> // Phys. Rev. Lett. 1992. V. 68. P. 710.

2. <em>Gracheva M., Katargin M., Kashurnikov V., Rudnev I.</em> // Low Temp. Phys. 1997. V. 23. P. 863.

3. <em>Olson C., Zimanyi G., Kolton A., Gronbech-Jensen N.</em> // Phys. Rev. Lett. 2000. V. 85. P. 5416.

4. <em>Fily Y., Olive E., Di Scala N., Soret J.</em> // Phys. Rev. B. 2010. V. 82. P. 134519.

5. <em>Sadovskyy I., Koshelev A., Phillips C.L., Karpeyev D.A., Glatz A.</em> // J. Comput. Phys. 2015. V. 294. P. 639.

6. <em>Lara A., Gonz’alez-Ruano C., Aliev F.G.</em> // Low Temp. Phys. 2020. V. 46. P. 316.

7. <em>Fischer D.X., Prokopec R., Emhofer J., Eisterer M.</em> // Supercond. Sci. Technol. 2018. V. 31. P. 044006.

8. <em>Aichner B., Müller B.M., Karrer M., et al.</em> // ACS Appl. Nano Mater. 2019. V. 2. P. 5108.

9. <em>Jia Y., LeRoux M., Miller D., et al.</em> // Appl. Phys. Lett. 2013. V. 103. P. 122601.

10. <em>Lamas J.S., Baldan C.A., Shigue C.Y., Silhanek A., Moshchalkov V.</em> // IEEE Trans. Appl. Supercond. 2011. V. 21. P. 3398.

11. <em>Song W., Pei X., Alafnan H., Xi J., Zeng X., Yazdani-Asrami M., Xiang B., Liu Z.</em> // IEEE Trans. Appl. Supercond. 2021. V. 31. P. 1.

12. <em>Kalsi S.S., Malozemoff A.</em> // Proc. IEEE Power Engineering Society General Meeting. P. 1426–1430.

13. <em>Lawrence W., Doniach S.</em> // Proc. 12th International Conference on Low Temperature Physics. P. 361.

14. <em>Kashurnikov V., Maksimova A., Rudnev I., Odintsov D.</em> // J. Phys.: Conf. Ser. 2019. V. 1238. P. 012016.

15. <em>Maksimova A.N., Kashurnikov V.A., Moroz A.N., Rudnev I.</em> // Phys. Solid State. 2021. V. 63. P. 64.

16. <em>Tyagi S., Goldschmidt Y.Y.</em> // Phys. Rev. B. 2004. V. 70. P. 024501.

17. <em>Goldschmidt Y.Y., Tyagi S.</em> // Phys. Rev. B. 2005. V. 71. P. 014503.


Review

For citations:


Maksimova A.N., Kashurnikov V.A., Rudnev I.A., Moroz A.N. Magnetization and Critical Current of a Weakly Anisotropic HTS with Columnar Pinning Centers. Nuclear Physics and Engineering. 2024;15(2):139-145. (In Russ.) https://doi.org/10.56304/S2079562923010177

Views: 43


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)