A Comparative Study of the Structure Features of Rapidly Quenched REP-Powders, PM HIP Compacts, Products of Austenitic Stainless Steels and Their Traditional Counterparts
https://doi.org/10.56304/S2079562923010268
Abstract
Rapidly quenched REP-powders produced by melt atomization, evidently, can be characterized by the effect of quenching rate on structure features as in traditional solid state quenching. However, the critical cooling rate, determined in the TTT diagram for melt phase transformation: crystallization is much higher than its value for suppressing austenite transformation in carbon steels. Important features of rapidly quenched powders – high dispersity of dendrites and formation of fine subgrain structure – determine the precipitation of carbides and borides. Direct nuclear methods of activation autoradiography on carbon, track autoradiography on boron, metallography, SEM, EDX, etc were used for investigation. The structure features including the lattice parameter of a solid solution of rapidly quenched REP powders, HIP PM compacts, products of austenitic stainless steels and their traditional counterparts were revealed and analyzed taking into account the role of carbon and boron, precipitation of carbides, borides and effect of non-equilibrium states.
About the Author
A. V. ShulgaRussian Federation
References
1. <em>Zinkle S.J., Was G.S.</em> // Acta Mater. 2013. V. 61 (3). P. 735. https://doi.org/10.1016/j.actamat.2012.11.004
2. <em>Yano Y. et al.</em> // J. Nucl. Mater. 2017. V. 487. P. 229. https://doi.org/10.1016/j.jnucmat.2017.02.021
3. <em>Shulga A.V.</em> // J. Nucl. Mater. 2013. V. 434 (1–3). P. 133. https://doi.org/10.1016/j.jnucmat.2012.11.008
4. <em>Shulga A.V.</em> // Proc. European Congress and Exhibition on PM. 2016. P. 1.
5. <em>Shulga A.V.</em> // Proc. European Congress and Exhibition on PM. 2022. P. 1.
6. <em>Shulga A.V.</em> // J. Nucl. Mater. 2008. V. 373 (1–3). P. 44. https://doi.org/10.1016/j.jnucmat.2007.04.050
7. <em>Daamen M. et al.</em> // Proc. 8th European Continuous Casting Conference. 2014. V. 8. P. 1.
8. <em>Mukunthan K. et al.</em> // ISIJ Int. 2013. V. 53 (12). P. 2152. https://doi.org/10.2355/isijinternational.53.2152
9. <em>Vallejo N.D. et al.</em> // Metals. 2021. V. 11 (5). P. 832. https://doi.org/10.3390/met11050832
10. <em>Whitesell H.S., Overfelt R.A.</em> // Mater. Sci. Eng. 2001. V. 318 (1–2). P. 264.
11. <em>Zhang Y., Huang B., Li J.</em> // Metall. Mater. Trans. A. 2013. V. 44. P. 1641. https://doi.org/10.1007/s11661-013-1645-7
12. <em>Rahimian M. et al.</em> // Metall. Mater. Trans. A. 2015. V. 46. P. 2227. https://doi.org/10.1007/s11661-015-2815-6
13. <em>Milenkovic S. et al.</em> // Proc. MATEC Web of Conf. 2014. V. 14. P. 13004.
14. <em>Rosa D. et al.</em> // Metall. Mater. Trans. A. 2008. V. 39. P. 2161. https://doi.org/10.1007/s11661-008-9542-1
15. <em>Sourmail T., Okuda T., Taylor J.E.</em> // Scr. Mater. 2004. V. 50 (10). P. 1271. https://doi.org/10.1016/j.scriptamat.2004.02.028
16. <em>Cao Y., Ernst F., Michal G.M.</em> // Acta Mater. 2003. V. 51 (14). P. 4171. https://doi.org/10.1016/S1359-6454(03)00235-0
17. <em>Ren Z., Heuer A.H., Ernst F.</em> // Acta Mater. 2019. V. 167. P. 231. https://doi.org/10.1016/j.actamat.2019.01.018
18. <em>Nascimento F.C. et al.</em> // Mater. Res.-Ibero-Am. J. 2009. V. 12 (2). P. 173. https://doi.org/10.1590/S1516-14392009000200011
19. <em>Ren Z., Ernst F.</em> // Acta Mater. 2019. V. 173. P. 96. https://doi.org/10.1016/j.actamat.2019.04.039
20. <em>Zhang J. et al.</em> // Acta Mater. 2021. V. 217. P. 117176. https://doi.org/10.1016/j.actamat.2021.117176
21. <em>Okita T. et al.</em> // Phil. Mag. 2005. V. 85 (18). P. 2033. https://doi.org/10.1080/14786430412331331871
22. <em>Rosa D. et al.</em> // Metall. Mater. Trans. A. 2008. V. 39. P. 2161. https://doi.org/10.1007/s11661-008-9542-1
23. <em>Rodenburg C., Rainforth W.M.</em> // Acta Mater. 2007. V. 55 (7). P. 2443. https://doi.org/10.1016/j.actamat.2006.11.039
24. <em>Beese A.M. et al.</em> // Nat. Commun. 2018. V. 9 (1). P. 2083. https://doi.org/10.1038/s41467-018-04473-5
25. <em>Epperlya E.N., Sillsa R.B.</em> // Acta Mater. 2020. V. 193. P. 1. https://doi.org/10.1016/j.actamat.2020.03.031
26. <em>Sills R.B., Cai W.</em> // Phil. Mag. 2016. V. 96 (10). P. 895. https://doi.org/10.1080/14786435.2016.1142677
27. <em>Шульга А.В.</em> // Ядерная физика и инжиниринг. 2022. Т. 13 (3) С. 222. https://doi.org/10.56304/S2079562922010390 [<em>Shulga A.V.</em> // Phys. At. Nucl. 2021. V. 84 (11). P. 1801]. https://doi.org/10.1134/S1063778821090325
28. <em>Шульга А.В.</em> // Ядерная физика и инжиниринг. 2023. Т. 14 (1). С. 27. https://doi.org/10.56304/S2079562922030484 [<em>Shulga A.V.</em> // Phys. At. Nucl. 2022. V. 85 (12). P. 2015]. https://doi.org/10.1134/S1063778822100581
Review
For citations:
Shulga A.V. A Comparative Study of the Structure Features of Rapidly Quenched REP-Powders, PM HIP Compacts, Products of Austenitic Stainless Steels and Their Traditional Counterparts. Nuclear Physics and Engineering. 2024;15(2):116-132. (In Russ.) https://doi.org/10.56304/S2079562923010268