Preview

Nuclear Physics and Engineering

Advanced search

A Comparative Study of the Structure Features of Rapidly Quenched REP-Powders, PM HIP Compacts, Products of Austenitic Stainless Steels and Their Traditional Counterparts

https://doi.org/10.56304/S2079562923010268

Abstract

Rapidly quenched REP-powders produced by melt atomization, evidently, can be characterized by the effect of quenching rate on structure features as in traditional solid state quenching. However, the critical cooling rate, determined in the TTT diagram for melt phase transformation: crystallization is much higher than its value for suppressing austenite transformation in carbon steels. Important features of rapidly quenched powders – high dispersity of dendrites and formation of fine subgrain structure – determine the precipitation of carbides and borides. Direct nuclear methods of activation autoradiography on carbon, track autoradiography on boron, metallography, SEM, EDX, etc were used for investigation. The structure features including the lattice parameter of a solid solution of rapidly quenched REP powders, HIP PM compacts, products of austenitic stainless steels and their traditional counterparts were revealed and analyzed taking into account the role of carbon and boron, precipitation of carbides, borides and effect of non-equilibrium states.

About the Author

A. V. Shulga
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
Russian Federation


References

1. <em>Zinkle S.J., Was G.S.</em> // Acta Mater. 2013. V. 61 (3). P. 735. https://doi.org/10.1016/j.actamat.2012.11.004

2. <em>Yano Y. et al.</em> // J. Nucl. Mater. 2017. V. 487. P. 229. https://doi.org/10.1016/j.jnucmat.2017.02.021

3. <em>Shulga A.V.</em> // J. Nucl. Mater. 2013. V. 434 (1–3). P. 133. https://doi.org/10.1016/j.jnucmat.2012.11.008

4. <em>Shulga A.V.</em> // Proc. European Congress and Exhibition on PM. 2016. P. 1.

5. <em>Shulga A.V.</em> // Proc. European Congress and Exhibition on PM. 2022. P. 1.

6. <em>Shulga A.V.</em> // J. Nucl. Mater. 2008. V. 373 (1–3). P. 44. https://doi.org/10.1016/j.jnucmat.2007.04.050

7. <em>Daamen M. et al.</em> // Proc. 8th European Continuous Casting Conference. 2014. V. 8. P. 1.

8. <em>Mukunthan K. et al.</em> // ISIJ Int. 2013. V. 53 (12). P. 2152. https://doi.org/10.2355/isijinternational.53.2152

9. <em>Vallejo N.D. et al.</em> // Metals. 2021. V. 11 (5). P. 832. https://doi.org/10.3390/met11050832

10. <em>Whitesell H.S., Overfelt R.A.</em> // Mater. Sci. Eng. 2001. V. 318 (1–2). P. 264.

11. <em>Zhang Y., Huang B., Li J.</em> // Metall. Mater. Trans. A. 2013. V. 44. P. 1641. https://doi.org/10.1007/s11661-013-1645-7

12. <em>Rahimian M. et al.</em> // Metall. Mater. Trans. A. 2015. V. 46. P. 2227. https://doi.org/10.1007/s11661-015-2815-6

13. <em>Milenkovic S. et al.</em> // Proc. MATEC Web of Conf. 2014. V. 14. P. 13004.

14. <em>Rosa D. et al.</em> // Metall. Mater. Trans. A. 2008. V. 39. P. 2161. https://doi.org/10.1007/s11661-008-9542-1

15. <em>Sourmail T., Okuda T., Taylor J.E.</em> // Scr. Mater. 2004. V. 50 (10). P. 1271. https://doi.org/10.1016/j.scriptamat.2004.02.028

16. <em>Cao Y., Ernst F., Michal G.M.</em> // Acta Mater. 2003. V. 51 (14). P. 4171. https://doi.org/10.1016/S1359-6454(03)00235-0

17. <em>Ren Z., Heuer A.H., Ernst F.</em> // Acta Mater. 2019. V. 167. P. 231. https://doi.org/10.1016/j.actamat.2019.01.018

18. <em>Nascimento F.C. et al.</em> // Mater. Res.-Ibero-Am. J. 2009. V. 12 (2). P. 173. https://doi.org/10.1590/S1516-14392009000200011

19. <em>Ren Z., Ernst F.</em> // Acta Mater. 2019. V. 173. P. 96. https://doi.org/10.1016/j.actamat.2019.04.039

20. <em>Zhang J. et al.</em> // Acta Mater. 2021. V. 217. P. 117176. https://doi.org/10.1016/j.actamat.2021.117176

21. <em>Okita T. et al.</em> // Phil. Mag. 2005. V. 85 (18). P. 2033. https://doi.org/10.1080/14786430412331331871

22. <em>Rosa D. et al.</em> // Metall. Mater. Trans. A. 2008. V. 39. P. 2161. https://doi.org/10.1007/s11661-008-9542-1

23. <em>Rodenburg C., Rainforth W.M.</em> // Acta Mater. 2007. V. 55 (7). P. 2443. https://doi.org/10.1016/j.actamat.2006.11.039

24. <em>Beese A.M. et al.</em> // Nat. Commun. 2018. V. 9 (1). P. 2083. https://doi.org/10.1038/s41467-018-04473-5

25. <em>Epperlya E.N., Sillsa R.B.</em> // Acta Mater. 2020. V. 193. P. 1. https://doi.org/10.1016/j.actamat.2020.03.031

26. <em>Sills R.B., Cai W.</em> // Phil. Mag. 2016. V. 96 (10). P. 895. https://doi.org/10.1080/14786435.2016.1142677

27. <em>Шульга А.В.</em> // Ядерная физика и инжиниринг. 2022. Т. 13 (3) С. 222. https://doi.org/10.56304/S2079562922010390 [<em>Shulga A.V.</em> // Phys. At. Nucl. 2021. V. 84 (11). P. 1801]. https://doi.org/10.1134/S1063778821090325

28. <em>Шульга А.В.</em> // Ядерная физика и инжиниринг. 2023. Т. 14 (1). С. 27. https://doi.org/10.56304/S2079562922030484 [<em>Shulga A.V.</em> // Phys. At. Nucl. 2022. V. 85 (12). P. 2015]. https://doi.org/10.1134/S1063778822100581


Review

For citations:


Shulga A.V. A Comparative Study of the Structure Features of Rapidly Quenched REP-Powders, PM HIP Compacts, Products of Austenitic Stainless Steels and Their Traditional Counterparts. Nuclear Physics and Engineering. 2024;15(2):116-132. (In Russ.) https://doi.org/10.56304/S2079562923010268

Views: 40


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)