Preview

Nuclear Physics and Engineering

Advanced search

Comparative Study of the Composition and Structure of the Target (ZrSi2–ZrB2– MoSi2)/Cr and Coatings Formed Using Them by the DCMS and HIPIMS Methods

https://doi.org/10.56304/S207956292301013X

Abstract

This work is devoted to the production of a ceramic target (ZrSi2–ZrB2–MoSi2)/Cr by hot pressing of products of self-propagating high-temperature synthesis and deposition of coatings in the Zr–Si–Mo–B system by DC magnetron sputtering and high-power pulsed magnetron sputtering. The composition and structure of the initial powder mixtures, SHS products, a two-layer functionally graded target, and coatings deposited during its sputtering have been studied. It is shown that the developed target (ZrSi2–ZrB2–Mo–
Si2)/Cr can be successfully used to obtain coatings with a dense homogeneous defect-free structure, including at high-energy sputtering regimes, peak current of 50 A, and peak power of 50 kW.

About the Authors

Ph. V. Kiryukhantsev-Korneev
National University of Science and Technology “MISIS”, Moscow, 119049 Russia
Russian Federation


А. D. Sytchenko
National University of Science and Technology “MISIS”, Moscow, 119049 Russia
Russian Federation


А. Yu. Potanin
National University of Science and Technology “MISIS”, Moscow, 119049 Russia
Russian Federation


S. I. Rupasov
National University of Science and Technology “MISIS”, Moscow, 119049 Russia
Russian Federation


N. V. Shvyndina
National University of Science and Technology “MISIS”, Moscow, 119049 Russia
Russian Federation


Е. А. Levashov
National University of Science and Technology “MISIS”, Moscow, 119049 Russia
Russian Federation


References

1. <em>Mark M.O., Inna G.T., Eric J.W., James A.Z., Samuel J.C.</em> // J. Eur. Ceram. Soc. 1999. V. 19. P. 2405−2414.

2. <em>Niu Y., Wang H., Li H., Zheng X., Ding C.</em> // Ceram. Int. 2013. V. 39. P. 9773–9777.

3. <em>Yeom H., Maier B., Mariani R.</em> // J. Mater. Res. 2016. V. 31. P. 3409–3419.

4. <em>Liu F., Li H., Gu S., Yao X., Fu Q.</em> // Ceram. Int. 2018. V. 44. P. 6619–6625.

5. <em>Liu F., Li H., Gu S., Yao X., Fu Q.</em> // Ceram. Int. 2018. V. 44. P. 15065–15071.

6. <em>Grigoriev O.N., Galanov B.A., Lavrenko V.A., Panasyuk A.D., Ivanov S.M., Koroteev A.V., Nickel K.G.</em> // J. Eur. Ceram. Soc. 2010. V. 30. P. 2397–2405.

7. <em>Zhang C., You J., Chen H., Zeng H., Jiang G.</em> // J. Chinese Ceram. Soc. 2006. V. 34 (10). P. 1172–1176.

8. <em>Зиновьева М.В.</em> Разработка гетерофазных сплавов для защиты композиционных материалов от воздействия высокоэнтальпийных потоков окислительного газа: дис. к.т.н. 05.16.06. Москва. 2022.

9. <em>Wang M., Wang C.-A, Zhang X.</em> // Mater. Des. 2012. V. 34. P. 293–297.

10. <em>Sha J.J., Li J., Wang S.H., Wang Y.C., Zhang Z.F., Dai J.X.</em> // Mater. Des. 2015. V. 75. P. 160–165.

11. <em>Silvestroni L., Meriggi G., Sciti D.</em> // Corros. Sci. 2014. V. 83. P. 281–291.

12. <em>Friák M., Holec D., Šob M.</em> // J. Alloys Compd. 2018. V. 746. P. 720–728.

13. <em>Petrovic J.J.</em> // Mater. Sci. Eng. 1995. V. 192–193. P. 31–37.

14. <em>Astapov A.N., Pogozhev Yu.S., Prokofiev M.V., Lifanov I.P., Potanin A.Yu., Levashov E.A., Vershinnikov V.I.</em> // Ceram. Int. 2019. V. 45. P. 6392–6404.

15. <em>Yeom H., Maier B., Mariani R., Bai D., Fronek S., Xu P., Sridharan K.</em> // Surf. Coat. Technol. 2017. V. 316. P. 30–38.

16. <em>Kim J.J., Kim H.G., Ryu H.J.</em> // Surf. Coat. Technol. 2020. V. 52. P. 2054–2063.

17. <em>Yeom H., Lockh P.C., Mariani R., Xu P., Corradini M., Sridharan K.</em> // J. Nucl. Mater. 2018. V. 499. P. 256–267.

18. <em>Wang L., Fu Q., Zhao F., Zhao Z.</em> // Surf. Coat. Technol. 2018. V. 347. P. 257–269.

19. <em>Lifanov I.P., Astapov A.N., Terentieva V.S.</em> // J. Phys. Conf. Ser. 2020. V. 1713. P. 012025.

20. <em>Zhou L., Fu Q., Huo C., Wang Y., Tong M.</em> // Ceram. Int. 2018. V. 44. P. 14781–14788.

21. <em>Liu F., Li H., Gu S., Yao X., Fu Q.</em> // Ceram. Int. 2018. V. 44 (6). P. 6619–6625.

22. <em>Astapov A.N., Zhestkov B.E., Pogozhev Yu.S., Zinovyeva M.V., Potanin A.Yu., Levashov E.A.</em> // Corros. Sci. 2021. V. 189. P. 109587.

23. <em>Hseih W.Y., Chen L.J.</em> // J. Appl. Phys. 1994. V. 76. P. 278–284.

24. <em>Gudmundsson J.T.</em> // Plasma Sources Sci. Technol. 2020. V. 29. P. 113001.

25. <em>Kub P.T., Gudmundsson J.T., Lundin D.</em> // J. Appl. Phys. 2020. V. 121. P. 223–263.

26. <em>Кирюханцев-Корнеев Ф.В., Яцюк И.В.</em> // Ядерная физика и инжиниринг. 2019. Т. 10 (6). С. 527−530. [<em>Kiryukhantsev-Korneev F.V., Yatsyuk I.V.</em> // Phys. At. Nucl. 2019. V. 82. P. 1437–1440].

27. <em>Kiryukhantsev-Korneev F.V., Lemesheva M.V., Shvyndina N.V., et al.</em> // Prot. Met. Phys. Chem. Surf. 2018. V. 54. P. 1147–1156.

28. <em>Kiryukhantsev-Korneev P., Sytchenko A., Pogozhev Y., Vorotilo S., Orekhov A., Loginov P., Levashov E.</em> // Materials. 2021. V. 14. P. 1932.

29. <em>Kiryukhantsev-Korneev P.V., Sytchenko A.D., Loginov P.A., Orekhov A.S., Levashov E.A.</em> // Coatings. 2022. V. 12. P. 1570.

30. <em>Kiryukhantsev-Korneev Ph.V., Sytchenko A.D., Sviridova T.A., Sidorenko D.A., Andreev N.V., Klechkovskaya V.V., Polčak J., Levashov E.A.</em> // Surf. Coat. Technol. 2022. V. 442. P. 128141.

31. <em>Kiryukhantsev-Korneev F.V.</em> // Russ. J. Non-Ferr. Met. 2014. V. 55. P. 494–504.

32. <em>Monteverde F.</em> // J. Mater. Sci. 2008. V. 43. P. 1002–1007.

33. <em>Chamberlain A.L., Fahrenholtz W.G., Hilmas G.E.</em> // J. Eur. Ceram. Soc. 2009. V. 29. P. 3401–3408.

34. <em>Grohsmeyer R.J., Silvestroni L., Hilmas G.E.</em> // J. Eur. Ceram. Soc. 2019. V. 39 (6). P. 1939–1947.

35. <em>Harrington G.J.K., Hilmas G.E., Fahrenholtz W.G.</em> // J. Am. Ceram. Soc. 2013. V. 96. P. 3622–3630.

36. <em>Ghailane A., Makha M., Larhlimi H.</em> // Mater. Lett. 2020. V. 280. P. 128540.

37. <em>Lundin D., Sarakinos K.</em> // J. Mater. Res. 2012. V. 27. P. 780–792.

38. <em>Shtansky D.V., Kiryukhantsev-Korneev Ph.V., Bashkova I.A., et al.</em> // Int. J. Refract. Hard. Met. 2010. V. 28. P. 32–39.

39. <em>Bondarev A.V., Vorotilo S., Shchetinin I.V., et al.</em> // Surf. Coat. Technol. 2019. V. 359. P. 342–353.

40. <em>Lange A., Braun R., Heilmaier M.</em> // Intermetallics. 2014. V. 48. P. 19–27.

41. <em>Bahr A., Richter S., Hahn R., et al.</em> // J. Alloys Compd. 2023. V. 931. P. 167532.

42. <em>Liu J., Li J., Wu J., et al.</em> // Nanoscale Res. Lett. 2019. V. 14. P. 154.

43. <em>Alami J., Sarakinos K., Mark G., et al.</em> // Appl. Phys. Lett. 2006. V. 89. P. 154104.

44. <em>Samuelsson M., Lundin D., Jensen J., et al.</em> // Surf. Coat. Tech. 2010. V. 205. P. 591–596.

45. <em>Isaac Asempah, Junhua Xu, Lihua Yu, Lei Wang</em> // Ceram. Int. 2019. V. 45. P. 19395–19403.

46. <em>Xie Z.-W., Wang L.-P., Wang X.-F., et al.</em> // T. Nonferr. Metal. Soc. 2011. V. 21. P. 476–482.


Review

For citations:


Kiryukhantsev-Korneev P.V., Sytchenko А.D., Potanin А.Yu., Rupasov S.I., Shvyndina N.V., Levashov Е.А. Comparative Study of the Composition and Structure of the Target (ZrSi2–ZrB2– MoSi2)/Cr and Coatings Formed Using Them by the DCMS and HIPIMS Methods. Nuclear Physics and Engineering. 2024;15(2):109-115. (In Russ.) https://doi.org/10.56304/S207956292301013X

Views: 52


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)