Preview

Nuclear Physics and Engineering

Advanced search

Size Dependence of the Electronic Properties of Tantalum Nanoclusters

https://doi.org/10.56304/S2079562923010244

Abstract

The results of studying the electronic states of tantalum nanoclusters on a silicon substrate by scanning tunneling spectroscopy are presented. Nanoclusters were obtained by the method of cluster deposition from the gas phase using magnetron sputtering of a tantalum target. Clusters were formed using a Nanogen-50 cluster source (Mantis Deposition) with a quadrupole mass filter integrated into the preparation chamber of the Omicron Multiprobe MXPS VT AFM-25 ultrahigh vacuum system. It has been established that for spherical nanoclusters of different sizes, the tunneling current differs significantly, the measured differential current-voltage characteristic of nanoclusters near the Fermi energy is nonmonotonic, which may indicate a change in the density of states near the Fermi energy. This change in the tunneling conductivity of nanoclusters depending on their size indicates the presence of a metal-nonmetal transition in metal nanoclusters on the semiconductor surface as the cluster size decreases.

About the Authors

V. A. Shilov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
Russian Federation


K. M. Balakhnev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
Russian Federation


P. V. Borisuk
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
Russian Federation


D. V. Bortko
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
Russian Federation


O. S. Vasilyev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
Russian Federation


References

1. Hutter E., Fendler J.H. // Adv. Mater. 2004. V. 16 (19). P. 1685.

2. Reyna A.S., de Araújo C.B. // J. Optics. V. 24 (10). P. 104006.

3. Zhou B. et al. // Nat. Nanotechnol. 2015. V. 10 (11). P. 924.

4. Pan P. et al. // Angew. Chem. Int. Ed. 2022. V. 61 (50). P. e202213016.

5. Kuemmeth F. et al. // Nano Lett. 2008. V. 8 (12). P. 4506.

6. Mocatta D. et al. // Science. 2011. V. 332 (6025). P. 77.

7. Kano S., Tada T., Majima Y. // Chem. Soc. Rev. 2015. V. 44 (4). P. 970.

8. Борман В.Д. и др. // Письма в журнал экспериментальной и теоретической физики. 2007. Т. 86 (6). С. 450.

9. Buffat P., Borel J.P. // Phys. Rev. A. 1976. V. 13 (6). P. 2287.

10. Bifone A., Casalis L., Riva R. // Phys. Rev. B. 1995. V. 51 (16). P. 11043.

11. Bortko D.V. et al. // Phys. At. Nucl. 2022. V. 85 (12). P. 2115.

12. D’Addato S., Perricone F., Paolicelli G. // SN Appl. Sci. 2022. V. 4 (2). P. 65.

13. Barr E. T.L. Modern Escathe Principles and Practice of X-ray Photoelectron Spectroscopy. 1994. Boca Raton: CRC press.


Review

For citations:


Shilov V.A., Balakhnev K.M., Borisuk P.V., Bortko D.V., Vasilyev O.S. Size Dependence of the Electronic Properties of Tantalum Nanoclusters. Nuclear Physics and Engineering. 2024;15(1):98-104. (In Russ.) https://doi.org/10.56304/S2079562923010244

Views: 28


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)