Methodology for Constructing 2D Distributions of Plasma Parameters Using Heavy Ion Beam Probe Data on the T-10 Tokamak
https://doi.org/10.56304/S2079562923010037
Abstract
Heavy Ion Beam Probe (HIBP) is a unique tool for investigating the electrical potential and various turbulence characteristics in both the core and edge of toroidal plasmas. The position of the HIBP measurement region is defined by the energy of the probing beam and the entrance angle into the plasma. The probing beam energy is constant during the plasma discharge, and it determines the maximum penetration depth of the beam into the plasma. The entrance angle can be varied during one discharge, and the positions of the measuring points for different beam angles can be set as a detection line. The set of detector lines for different probing beam energies represents a two-dimensional region (detector grid) in the vertical plasma cross section. The paper presents a method of data processing, which allows us to build two-dimensional distributions of plasma parameters from HIBP data in the T-10 tokamak using the electric potential of the plasma as an example.
Keywords
About the Authors
Y. M. AmmosovRussian Federation
F. O. Khabanov
Russian Federation
M. A. Drabinskiy
Russian Federation
A. V. Melnikov
Russian Federation
L. G. Eliseev
Russian Federation
N. K. Kharchev
Russian Federation
S. E. Lysenko
Russian Federation
E. A. Tsyvkunova
Russian Federation
References
1. <em>Melnikov A.V. et al.</em> // Fusion Eng. Des. 2019. V. 146. P. 850. https://doi.org/10.1016/j.fusengdes.2019.01.096
2. <em> Khabanov P.O. et al.</em> // J. Instrum. 2019. V. 14. P. C09033. https://doi.org/10.1088/1748-0221/14/09/C09033
3. <em>Ilin A.M., Khabanov P.O., Melnikov A.V.</em> // J. Phys. Conf. Ser. 2019. V. 1383 (1). P. 012006. https://doi.org/10.1088/1742-6596/1383/1/012006
4. <em>Khabanov P.O. et al.</em> // Probl. At. Sci. Technol. 2020. V. 130 (6). P. 195.
5. <em>Drabinskiy M.A. et al.</em> // J. Phys. Conf. Ser. 2019. V. 1383 (1). P. 012004. https://doi.org/10.1088/1742-6596/1383/1/012004
6. <em>Drabinskiy M.A. et al.</em> // J. Phys. Conf. Ser. 2021. V.2055 (1). P. 012001. https://doi.org/10.1088/1742-6596/2055/1/012001
7. <em>Melnikov A.V. et al.</em> // Plasma Fusion Res. 2018. V. 13. P. 3402109. https://doi.org/10.1585/PFR.13.3402109
8. <em>Shimizu A. et al.</em> // Rev. Sci. Instrum. 2014. V. 85 (11). P. 11D853. https://doi.org/10.1063/1.4891975
9. <em>Shimizu A. et al.</em> // Rev. Sci. Instrum. 2016. V. 87 (11). P. 11E731. https://doi.org/10.1063/1.4963908
10. <em>Sharma R. et al.</em> // Phys. Plasmas. 2020. V. 27 (6). P. 062502. https://doi.org/10.1063/1.5142996
11. <em>Melnikov A.V. et al.</em> // Plasma Phys. Control. Fusion. 2022. V. 64 (5). P. 054009. https://doi.org/10.1088/1361-6587/ac5b4c
12. <em>Dnestrovskij Y.N. et al.</em> // IEEE Trans. Plasma Sci. 1994. V. 22 (4). P. 310. https://doi.org/10.1109/27.310637
13. <em>Solensten L., Connor K.A.</em> // Rev. Sci. Instrum. 1987. V. 58 (4). P. 516. https://doi.org/10.1063/1.1139262
14. <em>Melnikov A.V. et al.</em> // Nucl. Fusion. V. 57 (7). P. 072004. https://doi.org/10.1088/1741-4326/aa5382
15. <em>Melnikov A.V. et al.</em> // Czechoslov. J. Phys. 2005. V. 55 (3). P. 349. https://doi.org/10.1007/s10582-005-0046-6
16. <em>Melnikov A.V. et al.</em> // Plasma Phys. Control. Fusion. 2006. V. 48 (4). P. S87. https://doi.org/10.1088/0741-3335/48/4/S07
17. <em>Аммосов Я.М. и др.</em> // Ядерная физика и инжиниринг. 2023. Т. 14 (3). С. 278. https://doi.org/10.56304/S2079562922050049
18. <em>Drabinskii M.A. et al.</em> // Probl. At. Sci. Technol. Ser. Thermonucl. Fusion. 2016. V. 39 (2). P. 81–90. https://doi.org/10.21517/0202-3822-2016-39-2-81-90
19. <em>Barber C.B., Dobkin D.P., Huhdanpaa H.</em> // ACM Trans. Math. Softw. 1996. V. 22 (4). P. 469. https://doi.org/10.1145/235815.235821
20. <em>Alfeld P.</em> // Comput. Aided Geom. Des. 1984. V. 1 (2). P. 169. https://doi.org/10.1016/0167-8396(84)90029-3
21. <em>Farin G.</em> // Comput. Aided Geom. Des. 1986. V. 3 (2). P. 83. https://doi.org/10.1016/0167-8396(86)90016-6
22. <em>Nielson G.M.</em> // Math. Comput. 1983. V. 40 (161). P. 253. https://doi.org/10.2307/2007373
23. <em>Renka R.L., Cline A.K.</em> // Rocky Mt. J. Math. 1984. V. 14 (1). P. 223. https://doi.org/10.1216/RMJ-1984-14-1-223
Review
For citations:
Ammosov Y.M., Khabanov F.O., Drabinskiy M.A., Melnikov A.V., Eliseev L.G., Kharchev N.K., Lysenko S.E., Tsyvkunova E.A. Methodology for Constructing 2D Distributions of Plasma Parameters Using Heavy Ion Beam Probe Data on the T-10 Tokamak. Nuclear Physics and Engineering. 2024;15(1):80-89. (In Russ.) https://doi.org/10.56304/S2079562923010037