Preview

Nuclear Physics and Engineering

Advanced search

Methodology for Constructing 2D Distributions of Plasma Parameters Using Heavy Ion Beam Probe Data on the T-10 Tokamak

https://doi.org/10.56304/S2079562923010037

Abstract

Heavy Ion Beam Probe (HIBP) is a unique tool for investigating the electrical potential and various turbulence characteristics in both the core and edge of toroidal plasmas. The position of the HIBP measurement region is defined by the energy of the probing beam and the entrance angle into the plasma. The probing beam energy is constant during the plasma discharge, and it determines the maximum penetration depth of the beam into the plasma. The entrance angle can be varied during one discharge, and the positions of the measuring points for different beam angles can be set as a detection line. The set of detector lines for different probing beam energies represents a two-dimensional region (detector grid) in the vertical plasma cross section. The paper presents a method of data processing, which allows us to build two-dimensional distributions of plasma parameters from HIBP data in the T-10 tokamak using the electric potential of the plasma as an example.

About the Authors

Y. M. Ammosov
National Research Centre “Kurchatov Institute”, Moscow, 123182 Russia Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141701 Russia
Russian Federation


F. O. Khabanov
University of Wisconsin-Madison, Madison, WI, 53706 USA
Russian Federation


M. A. Drabinskiy
National Research Centre “Kurchatov Institute”, Moscow, 123182 Russia
Russian Federation


A. V. Melnikov
National Research Centre “Kurchatov Institute”, Moscow, 123182 Russia Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141701 Russia National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
Russian Federation


L. G. Eliseev
National Research Centre “Kurchatov Institute”, Moscow, 123182 Russia
Russian Federation


N. K. Kharchev
National Research Centre “Kurchatov Institute”, Moscow, 123182 Russia Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991 Russia
Russian Federation


S. E. Lysenko
National Research Centre “Kurchatov Institute”, Moscow, 123182 Russia
Russian Federation


E. A. Tsyvkunova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
Russian Federation


References

1. <em>Melnikov A.V. et al.</em> // Fusion Eng. Des. 2019. V. 146. P. 850. https://doi.org/10.1016/j.fusengdes.2019.01.096

2. <em> Khabanov P.O. et al.</em> // J. Instrum. 2019. V. 14. P. C09033. https://doi.org/10.1088/1748-0221/14/09/C09033

3. <em>Ilin A.M., Khabanov P.O., Melnikov A.V.</em> // J. Phys. Conf. Ser. 2019. V. 1383 (1). P. 012006. https://doi.org/10.1088/1742-6596/1383/1/012006

4. <em>Khabanov P.O. et al.</em> // Probl. At. Sci. Technol. 2020. V. 130 (6). P. 195.

5. <em>Drabinskiy M.A. et al.</em> // J. Phys. Conf. Ser. 2019. V. 1383 (1). P. 012004. https://doi.org/10.1088/1742-6596/1383/1/012004

6. <em>Drabinskiy M.A. et al.</em> // J. Phys. Conf. Ser. 2021. V.2055 (1). P. 012001. https://doi.org/10.1088/1742-6596/2055/1/012001

7. <em>Melnikov A.V. et al.</em> // Plasma Fusion Res. 2018. V. 13. P. 3402109. https://doi.org/10.1585/PFR.13.3402109

8. <em>Shimizu A. et al.</em> // Rev. Sci. Instrum. 2014. V. 85 (11). P. 11D853. https://doi.org/10.1063/1.4891975

9. <em>Shimizu A. et al.</em> // Rev. Sci. Instrum. 2016. V. 87 (11). P. 11E731. https://doi.org/10.1063/1.4963908

10. <em>Sharma R. et al.</em> // Phys. Plasmas. 2020. V. 27 (6). P. 062502. https://doi.org/10.1063/1.5142996

11. <em>Melnikov A.V. et al.</em> // Plasma Phys. Control. Fusion. 2022. V. 64 (5). P. 054009. https://doi.org/10.1088/1361-6587/ac5b4c

12. <em>Dnestrovskij Y.N. et al.</em> // IEEE Trans. Plasma Sci. 1994. V. 22 (4). P. 310. https://doi.org/10.1109/27.310637

13. <em>Solensten L., Connor K.A.</em> // Rev. Sci. Instrum. 1987. V. 58 (4). P. 516. https://doi.org/10.1063/1.1139262

14. <em>Melnikov A.V. et al.</em> // Nucl. Fusion. V. 57 (7). P. 072004. https://doi.org/10.1088/1741-4326/aa5382

15. <em>Melnikov A.V. et al.</em> // Czechoslov. J. Phys. 2005. V. 55 (3). P. 349. https://doi.org/10.1007/s10582-005-0046-6

16. <em>Melnikov A.V. et al.</em> // Plasma Phys. Control. Fusion. 2006. V. 48 (4). P. S87. https://doi.org/10.1088/0741-3335/48/4/S07

17. <em>Аммосов Я.М. и др.</em> // Ядерная физика и инжиниринг. 2023. Т. 14 (3). С. 278. https://doi.org/10.56304/S2079562922050049

18. <em>Drabinskii M.A. et al.</em> // Probl. At. Sci. Technol. Ser. Thermonucl. Fusion. 2016. V. 39 (2). P. 81–90. https://doi.org/10.21517/0202-3822-2016-39-2-81-90

19. <em>Barber C.B., Dobkin D.P., Huhdanpaa H.</em> // ACM Trans. Math. Softw. 1996. V. 22 (4). P. 469. https://doi.org/10.1145/235815.235821

20. <em>Alfeld P.</em> // Comput. Aided Geom. Des. 1984. V. 1 (2). P. 169. https://doi.org/10.1016/0167-8396(84)90029-3

21. <em>Farin G.</em> // Comput. Aided Geom. Des. 1986. V. 3 (2). P. 83. https://doi.org/10.1016/0167-8396(86)90016-6

22. <em>Nielson G.M.</em> // Math. Comput. 1983. V. 40 (161). P. 253. https://doi.org/10.2307/2007373

23. <em>Renka R.L., Cline A.K.</em> // Rocky Mt. J. Math. 1984. V. 14 (1). P. 223. https://doi.org/10.1216/RMJ-1984-14-1-223


Review

For citations:


Ammosov Y.M., Khabanov F.O., Drabinskiy M.A., Melnikov A.V., Eliseev L.G., Kharchev N.K., Lysenko S.E., Tsyvkunova E.A. Methodology for Constructing 2D Distributions of Plasma Parameters Using Heavy Ion Beam Probe Data on the T-10 Tokamak. Nuclear Physics and Engineering. 2024;15(1):80-89. (In Russ.) https://doi.org/10.56304/S2079562923010037

Views: 20


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)