Preview

Nuclear Physics and Engineering

Advanced search

Application of Machine Learning Methods in the Baikal-GVD Experiment

https://doi.org/10.56304/S2079562923010116

Abstract

The Baikal-GVD experiment is a neutrino telescope located in Lake Baikal, Russia. As of 2022, it has an effective volume of 0.5 km3, which makes it the largest neutrino telescope in the Northern Hemisphere and the second largest in the world. This article presents an overview of machine learning methods developed to analyze data from the Baikal-GVD experiment. Specifically, we discuss neural networks developed to (1) suppress noise responses of optical modules, (2) identify neutrino-induced events and estimate their flux, and (3) recover the neutrino arrival angle. It is shown that neural networks are comparable or superior in accuracy to standard algorithmic event reconstruction procedures for similar problems.

About the Authors

I. V. Kharuk
Institute for Nuclear Research, Russian Academy of Sciences, Moscow, 117312 Russia Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Russia
Russian Federation


А. V. Matseiko
Institute for Nuclear Research, Russian Academy of Sciences, Moscow, 117312 Russia Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Russia
Russian Federation


А. Yu. Leonov
Institute for Nuclear Research, Russian Academy of Sciences, Moscow, 117312 Russia Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Russia
Russian Federation


References

1. <em>Aartsen M.G. et al.</em> // Science. 2013. V. 342. P. 1242856. https://arxiv.org/abs/1311.5238.

2. <em>Belolaptikov I. et al.</em> // Proc. PoS ICRC2021. P. 002. https://arxiv.org/abs/2109.14344.

3. <em>Allakhverdyan V.A. et al.</em> // Phys. Rev. D. 2023. V. 107. P. 042005. https://arxiv.org/abs/2211.09447.

4. <em>Aiello S. et al.</em> // Astropart. Phys. 2019. V. 111. P. 100−110. https://arxiv.org/abs/1810.08499.

5. <em>Aartsen M.G., Abbasi R., Ackermann M. et al.</em> // J. Phys. G. 2021. V. 48. P. 060501.

6. <em>Malyshkin Y. et al.</em> // Nucl. Instrum. Methods. Phys. Res. B. 2023. V. 1050. P. 168117.

7. <em>Choma N., Monti F., Gerhardt L., et al.</em> // https://arxiv.org/abs/1809.06166.

8. <em>Huennefeld M.</em> // Proc. PoS ICRC2017. P. 1057.

9. <em>Huennefeld M.</em> // EPJ Web of Conf. 2019. V. 207. P. 05005.

10. <em>Reck S., Guderian D., Vermarien G., Domi A.</em> // J. Instrum. 2021. V. 16. P. C10011. https://arxiv.org/abs/2107.13375.

11. <em>Aiello S., Albert A., Garre S.A., et al.</em> // J. Instrum. 2020. V. 15. P. P10005.

12. <em>Ronneberger O., Fischer P., Brox T.</em> // Proc. Intl. Conf. on Medical Image Computing and Computer-Assisted Intervention. P. 234−241.

13. <em>Avrorin A.D. et al.</em> // Proc. PoS ICRC2021 P. 1063. https://arxiv.org/abs/2108.00208.

14. <em>Lin T.-Y., Goyal P., Girshick R., He K., Doll’ar P.</em> // Proc. IEEE Intl. Conf. on Computer Vision. P. 2980−2988.

15. <em>Wang Y., Sun Y., Liu Z., Sarma S.E., Bronstein M.M., Solomon J.M.</em> // ACM Trans. Graph. 2019. V. 38. P. 1−12.


Review

For citations:


Kharuk I.V., Matseiko А.V., Leonov А.Yu. Application of Machine Learning Methods in the Baikal-GVD Experiment. Nuclear Physics and Engineering. 2024;15(1):36-42. (In Russ.) https://doi.org/10.56304/S2079562923010116

Views: 29


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)