Preview

Nuclear Physics and Engineering

Advanced search

Peculiarities of Investigation of HTS Tape by Low-Temperature Magneto-Optical Visualization

https://doi.org/10.56304/S2079562923010189

Abstract

In this paper, we analyze in detail the features of the application of the magneto-optical imaging technique for studying HTS tapes. We present a detailed description of the experimental technique, features of the research facility for low temperatures research. The features of the penetration of a magnetic field into a superconductor are described, the procedure for calibrating a magneto-optical film and algorithms for calculating magnetic field profiles from magneto-optical images are described in detail.

About the Authors

M. A. Osipov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
Russian Federation


D. A. Abin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
Russian Federation


I. A. Rudnev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
Russian Federation


References

1. <em>Supreeth D.K. et al.</em> // IEEE Trans. Appl. Supercond. 2022. V. 32 (3). P. 1–15.

2. <em>Zhang H., Mueller M.</em> // Supercond. Sci. Technol. 2021. V. 34 (4). P. 045018.

3. <em>Zimmermann A.W. et al.</em> // Energy Rep. 2020. V. 6. P. 180–188.

4. <em>Ciceron J. et al.</em> // IEEE Trans. Appl. Supercond. 2018. V. 28 (4). P. 5701005.

5. <em>Uglietti D.</em> // Supercond. Sci. Technol. 2019. V. 32 (5). P. 053001.

6. <em>Zhai Y., Brown T., Menard J.E., van der Laan D.C., Weiss J.D., Johnson Z.</em> // IEEE Trans. Appl. Supercond. 2022. V. 32 (6). P. 4203005.

7. <em>Rossi L., Senatore C.</em> // Instruments. 2021. V. 5 (1). P. 8. https://doi.org/10.3390/instruments5010008

8. <em>Zhu J., Chen S., Jin Z.</em> // Electronics. 2022. V. 11 (3). P. 297. https://doi.org/10.3390/electronics11030297

9. <em>Brandt E.H.</em> // Science. 1989. V. 243. P. 4889.

10. <em>Bernstein P., Noudem J.</em> // Supercond. Sci. Technol. 2020. V. 33. P. 033001.

11. <em>Werfel F.N. et al.</em> // Supercond. Sci. Technol. 2012. V. 25. P. 014007.

12. <em>Webster J.G., Stephan R.M., de Andrade R., Ferreira A.C., Sotelo G.G.</em> Wiley Encyclopedia of Electrical and Electronics Engineering. 2017. United States: Wiley Inter-Science. P. 1–18.

13. <em>Wang J. et al.</em> // Physica C Supercond. 2002. V. 378–381. P. 809–814.

14. <em>Schultz L. et al.</em> // IEEE Trans. Appl. Supercond. 2005. V. 15 (2). P. 2301–2305.

15. <em>Sotelo G.G., de Oliveira R.A.H., Costa F.S., Dias D.H.N., de Andrade R., Stephan R.M. // IEEE Trans. Appl. Supercond. 2015. V. 25 (3). P. 1–5.

16. <em>Deng Z. et al.</em> // IEEE Trans. Appl. Supercond. 2016. V. 26 (6). P. 3602408.

17. www.theva.com/.

18. <em>Furtner S., Nemetschek R., Semerad R., Sigl G., Prusseit W.</em> // Supercond. Sci. Technol. 2004. V. 17. P. S281–S284.

19. <em>Fuger R., Hengstberger F., Eisterer M., Weber H.W.</em> // IEEE Trans. Appl. Supercond. 2007. V. 17 (2). P. 3753–3756.

20. <em>Higashikawa K., Shiohara K.</em> // IEEE Trans. Appl. Supercond. 2012. V. 22 (3). P. 5–8.

21. <em>Jooss Ch., Albrecht J., Kuhn H., Leonhardt S., Kronmuller H.</em> // Rep. Prog. Phys. 2002. V 65. P. 651.

22. <em>Johansen T.H., Shantsev D.V.</em> Magneto-Optical Imaging. NATO Science Series II: Mathematics, Physics and Chemistry. 2004. London: Springer Dordrecht. V. 142.

23. <em>Villaume A., Porcar L., Bourgault D., Antonevici A, Caroff T., Leggeri J.P., Villard C.</em> // Supercond. Sci. Technol. 2008. V. 21. P. 034009.

24. <em>Song H., Davidson M.W., Schwartz J.</em> // Supercond. Sci. Technol. 2009. V. 22. P. 062001.

25. <em>Jung Y., Kwak K., Lee W., Rhee J., Youm D., Yoo J., Han Y.H., Park B.J.</em> // Supercond. Sci. Technol. 2012. V. 25. P. 065001.

26. <em>Wang X., Kamiya Y., Ishiyama A., Yagi M., Maruyama O., Ohkuma T.</em> // IEEE Trans. Appl. Supercond. 2012. V. 22. P. 5801004. https://doi.org/10.1109/TASC.2012.2184790

27. <em>Abraimov D., Gurevich A., Polyanskii A., Cai X.Y., Xu A., Pamidi S., Larbalestier D., Thieme C.L.H.</em> // Supercond. Sci. Technol. 2008. V. 21. P. 082004.

28. <em>Руднев И.А., Осипов М.А.</em> // Изв. РАН: Сер. физ. 2013. Т. 77 (3). С. 369–372.

29. <em>Rudnev I., Osipov M.</em> // J. Supercond. Nov. Magn. 2014. V. 27. P. 951–954.

30. <em>Применко А.Э., Осипов М.А., Руднев И.А.</em> // ЖТФ. 2017. Т. 87 (9). С. 1336–1345.

31. <em>Faraday M.</em> // Phil. Trois. Philos. Trans. R. Soc. London. 1846. V. 136. P. 1–20. https://www.jstor.org/stable/108303.

32. <em>Dorosinskii L.A., Indenbom M.V., Nikitenko V.I., et al.</em> // Physica C Supercond. 1992. V. 203. P. 149. https://doi.org/10.1016/0921-4534(92)90521-D

33. <em>Bean C.P.</em> // Rev. Mod. Phys. 1964. V. 61. P. 31.


Review

For citations:


Osipov M.A., Abin D.A., Rudnev I.A. Peculiarities of Investigation of HTS Tape by Low-Temperature Magneto-Optical Visualization. Nuclear Physics and Engineering. 2024;15(1):22-30. (In Russ.) https://doi.org/10.56304/S2079562923010189

Views: 34


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)