Transformation of the Electron Energy Distribution Function Near a Rectangular Hollow Cathode
https://doi.org/10.56304/S207956292201002X
Abstract
Using the improved method of single Langmuir probes, the electron energy distribution functions (EEDF) were obtained in a short (10 mm) discharge gap between a rectangular hollow cathode and a mesh anode. It was found that the electron distributions are not Maxwellian with an excess of high-energy electrons (10–20 eV), the proportion of which decreases with distance from the cathode. The features are associated with the nonlocal mechanism of the EEDF formation.
About the Authors
S. N. AndreevRussian Federation
A. V. Bernatskiy
Russian Federation
V. N. Ochkin
Russian Federation
References
1. <em>Bernatskiy A.V., Kochetov I.V., Ochkin V.N.</em> // Plasma Phys. Rep. 2020. V. 46 (9). P. 874. https://doi.org/10.1134/S1063780X20090020
2. <em>Bernatskiy A.V., Kochetov I.V., Ochkin V.N.</em> // Plasma Sources Sci. Technol. 2019. V. 28 (10). 105002. https://doi.org/10.1088/1361-6595/ab4301
3. <em>Bernatskiy A.V., Kochetov I.V., Ochkin V.N.</em> // Phys. Plasmas. 2018. V. 25 (8). 083517. https://doi.org/10.1063/1.5042839
4. <em>Bernatskiy A.V., Lagunov V.V., Ochkin V.N., Tskhai S.N.</em> // Laser Phys. Lett. 2016. V. 13 (7). P. 075702. https://doi.org/10.1088/1612-2011/13/7/075702
5. <em>Bernatskiy A.V., Lagunov V.V., Ochkin V.N.</em> // Quantum Electron. 2019. V. 49 (2). P. 157. https://doi.org/10.1070/QEL16819
6. <em>Andreev S.N., Bernatskiy A.V., Ochkin V.N.</em> // Vacuum. 2020. V. 180. P. 109616. https://doi.org/10.1016/j.vacuum.2020.109616
7. ITER. Final Design Report. 2001. G31 DDD 14 01_07-19 W0.1. Sect. 3.1.
8. <em>Mott-Smith H.M., Langmuir I.</em> // Phys. Review. 1926. V. 28. P. 727. https://doi.org/10.1103/PhysRev.28.727
9. <em>Druyvesteyn M.J.</em> // Z. Physik. 1930. V. 64. P. 781. https://doi.org/10.1007/BF01773007
10. <em>Иванов Ю.А., Лебедев Ю.А., Полак Л.С.</em> Методы контактной диагностики в неравновесной плазмохимии. 1981. Москва: Наука.
11. <em>Козлов О.В.</em> Электрический зонд в плазме. 1969. Москва: Атомиздат.
12. <em>Демидов В.И., Колоколов Н.Б., Кудрявцев А.А.</em> Зондовые методы исследования низкотемпературной плазмы. 1996. Москва: Энергоатомиздат (1996).
13. <em>Schott L.</em> Plasma Diagnostics. 1968. Amsterdam: North Holland.
14. <em>Demidov V.I., Koepke M.E., Kurlyandskaya I.P., Malkov M.A.</em> // Phys. Plasmas. 2020. V. 27. P. 020501. https://doi.org/10.1063/1.5127749
15. <em>Cherrington B.E.</em> // Plasma Chem. Plasma Process. 1982. V. 2. P. 113. https://doi.org/10.1007/BF00633129
16. <em>Godyak V.A., Piejak R.B., Alexandrovich B.M.</em> // Plasma Sources Sci. Technol. 1992. V. 1. P. 36. https://doi.org/10.1088/0963-0252/1/1/006
17. <em>Godyak V.A., Demidov V.I.</em> // J. Phys. D: Appl. Phys. 2011. V. 44. P. 233001. https://doi.org/10.1088/0022-3727/44/23/233001
18. <em>Godyak V.A., Alexandrovich B.M.</em> // J. Appl. Phys. 2015. V. 118. P. 233302. https://doi.org/10.1063/1.4937446
19. <em>Godyak V.A., Alexandrovich B.M., Kolobov V.I.</em> // Phys. Plasmas. 2019. V. 26. P. 033504. https://doi.org/10.1063/1.5088706
20. <em>Andreev S.N., Bernatskiy A.V., Ochkin V.N.</em> // Bull. Lebedev Phys. Inst. 2020. V. 47 (10). P. 317. https://doi.org/10.3103/10.3103.S1068335620100024
21. <em>Andreev S.N., Bernatskiy A.V., Ochkin V.N.</em> // Plasma Chem. Plasma Process. 2021. V. 41 (2). P. 659–672. https://doi.org/10.1007/s11090-020-10137-4
22. <em>Andreev S.N., Bernatskiy A.V., Dyatko N.A., Kochetov I.V., Ochkin V.N.</em> // Plasma Sources Sci. Technol. 2021. V. 30. P. 095004. https://doi.org/10.1088/1361-6595/ac1ee2
23. <em>Sigeneger F., Dyatko N.A., Winkler R.</em> // Plasma Chem. Plasma Process. 2003. V. 23. P. 103. https://doi.org/10.1023/A:1022420920041
24. <em>Winkler R., Petrov G., Sigeneger F., Uhrlandt D.</em> // Plasma Sources Sci. Technol. 1997. V. 6. P. 118. https://doi.org/10.1088/0963-0252/6/2/005
25. <em>Sigeneger F., Winkler R.</em> // Plasma Chem. Plasma Process. 1997. V. 17. P. 1. https://doi.org/10.1007/BF02766819
26. <em>Andreev S.N., Bernatskiy A.V., Dyatko N.A., Ochkin V.N.</em> // J. Phys. Conf. Ser. 2020. V. 1683. P. 032001. https://doi.org/10.1088/1742-6596/1683/3/032001
27. <em>Dyatko N.A., Kochetov I.V., Ochkin V.N.</em> // Plasma Sources Sci. Technol. 2020. V. 29. P. 125007. https://doi.org/10.1088/1361-6595/abc412
Review
For citations:
Andreev S.N., Bernatskiy A.V., Ochkin V.N. Transformation of the Electron Energy Distribution Function Near a Rectangular Hollow Cathode. Nuclear Physics and Engineering. 2022;13(2):182-186. (In Russ.) https://doi.org/10.56304/S207956292201002X