Preview

Nuclear Physics and Engineering

Advanced search

Transformation of the Electron Energy Distribution Function Near a Rectangular Hollow Cathode

https://doi.org/10.56304/S207956292201002X

Abstract

Using the improved method of single Langmuir probes, the electron energy distribution functions (EEDF) were obtained in a short (10 mm) discharge gap between a rectangular hollow cathode and a mesh anode. It was found that the electron distributions are not Maxwellian with an excess of high-energy electrons (10–20 eV), the proportion of which decreases with distance from the cathode. The features are associated with the nonlocal mechanism of the EEDF formation.

About the Authors

S. N. Andreev
Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy prosp., Moscow, 119991 Russia
Russian Federation


A. V. Bernatskiy
Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy prosp., Moscow, 119991 Russia
Russian Federation


V. N. Ochkin
Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy prosp., Moscow, 119991 Russia
Russian Federation


References

1. <em>Bernatskiy A.V., Kochetov I.V., Ochkin V.N.</em> // Plasma Phys. Rep. 2020. V. 46 (9). P. 874. https://doi.org/10.1134/S1063780X20090020

2. <em>Bernatskiy A.V., Kochetov I.V., Ochkin V.N.</em> // Plasma Sources Sci. Technol. 2019. V. 28 (10). 105002. https://doi.org/10.1088/1361-6595/ab4301

3. <em>Bernatskiy A.V., Kochetov I.V., Ochkin V.N.</em> // Phys. Plasmas. 2018. V. 25 (8). 083517. https://doi.org/10.1063/1.5042839

4. <em>Bernatskiy A.V., Lagunov V.V., Ochkin V.N., Tskhai S.N.</em> // Laser Phys. Lett. 2016. V. 13 (7). P. 075702. https://doi.org/10.1088/1612-2011/13/7/075702

5. <em>Bernatskiy A.V., Lagunov V.V., Ochkin V.N.</em> // Quantum Electron. 2019. V. 49 (2). P. 157. https://doi.org/10.1070/QEL16819

6. <em>Andreev S.N., Bernatskiy A.V., Ochkin V.N.</em> // Vacuum. 2020. V. 180. P. 109616. https://doi.org/10.1016/j.vacuum.2020.109616

7. ITER. Final Design Report. 2001. G31 DDD 14 01_07-19 W0.1. Sect. 3.1.

8. <em>Mott-Smith H.M., Langmuir I.</em> // Phys. Review. 1926. V. 28. P. 727. https://doi.org/10.1103/PhysRev.28.727

9. <em>Druyvesteyn M.J.</em> // Z. Physik. 1930. V. 64. P. 781. https://doi.org/10.1007/BF01773007

10. <em>Иванов Ю.А., Лебедев Ю.А., Полак Л.С.</em> Методы контактной диагностики в неравновесной плазмохимии. 1981. Москва: Наука.

11. <em>Козлов О.В.</em> Электрический зонд в плазме. 1969. Москва: Атомиздат.

12. <em>Демидов В.И., Колоколов Н.Б., Кудрявцев А.А.</em> Зондовые методы исследования низкотемпературной плазмы. 1996. Москва: Энергоатомиздат (1996).

13. <em>Schott L.</em> Plasma Diagnostics. 1968. Amsterdam: North Holland.

14. <em>Demidov V.I., Koepke M.E., Kurlyandskaya I.P., Malkov M.A.</em> // Phys. Plasmas. 2020. V. 27. P. 020501. https://doi.org/10.1063/1.5127749

15. <em>Cherrington B.E.</em> // Plasma Chem. Plasma Process. 1982. V. 2. P. 113. https://doi.org/10.1007/BF00633129

16. <em>Godyak V.A., Piejak R.B., Alexandrovich B.M.</em> // Plasma Sources Sci. Technol. 1992. V. 1. P. 36. https://doi.org/10.1088/0963-0252/1/1/006

17. <em>Godyak V.A., Demidov V.I.</em> // J. Phys. D: Appl. Phys. 2011. V. 44. P. 233001. https://doi.org/10.1088/0022-3727/44/23/233001

18. <em>Godyak V.A., Alexandrovich B.M.</em> // J. Appl. Phys. 2015. V. 118. P. 233302. https://doi.org/10.1063/1.4937446

19. <em>Godyak V.A., Alexandrovich B.M., Kolobov V.I.</em> // Phys. Plasmas. 2019. V. 26. P. 033504. https://doi.org/10.1063/1.5088706

20. <em>Andreev S.N., Bernatskiy A.V., Ochkin V.N.</em> // Bull. Lebedev Phys. Inst. 2020. V. 47 (10). P. 317. https://doi.org/10.3103/10.3103.S1068335620100024

21. <em>Andreev S.N., Bernatskiy A.V., Ochkin V.N.</em> // Plasma Chem. Plasma Process. 2021. V. 41 (2). P. 659–672. https://doi.org/10.1007/s11090-020-10137-4

22. <em>Andreev S.N., Bernatskiy A.V., Dyatko N.A., Kochetov I.V., Ochkin V.N.</em> // Plasma Sources Sci. Technol. 2021. V. 30. P. 095004. https://doi.org/10.1088/1361-6595/ac1ee2

23. <em>Sigeneger F., Dyatko N.A., Winkler R.</em> // Plasma Chem. Plasma Process. 2003. V. 23. P. 103. https://doi.org/10.1023/A:1022420920041

24. <em>Winkler R., Petrov G., Sigeneger F., Uhrlandt D.</em> // Plasma Sources Sci. Technol. 1997. V. 6. P. 118. https://doi.org/10.1088/0963-0252/6/2/005

25. <em>Sigeneger F., Winkler R.</em> // Plasma Chem. Plasma Process. 1997. V. 17. P. 1. https://doi.org/10.1007/BF02766819

26. <em>Andreev S.N., Bernatskiy A.V., Dyatko N.A., Ochkin V.N.</em> // J. Phys. Conf. Ser. 2020. V. 1683. P. 032001. https://doi.org/10.1088/1742-6596/1683/3/032001

27. <em>Dyatko N.A., Kochetov I.V., Ochkin V.N.</em> // Plasma Sources Sci. Technol. 2020. V. 29. P. 125007. https://doi.org/10.1088/1361-6595/abc412


Review

For citations:


Andreev S.N., Bernatskiy A.V., Ochkin V.N. Transformation of the Electron Energy Distribution Function Near a Rectangular Hollow Cathode. Nuclear Physics and Engineering. 2022;13(2):182-186. (In Russ.) https://doi.org/10.56304/S207956292201002X

Views: 58


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)