Preview

Nuclear Physics and Engineering

Advanced search

Atom Probe Tomography Data Reconstruction with the Correction on Material Density

https://doi.org/10.56304/S2079562922010250

Abstract

   Data collected with an atom probe tomograph allow to reconstruct 3D atom maps of chemical element atoms with high accuracy. Due to the permanent improvement of AP installations, new 3D reconstruction procedures are required. This work proposes an improved approach for atom probe data reconstruction which uses dynamic parameters and a calibration based on the material density.

About the Authors

А. А. Lukyanchuk
National Research Centre “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

123182; 115409; Moscow



А. А. Aleev
National Research Centre “Kurchatov Institute”
Russian Federation

123182; Moscow



А. S. Shutov
National Research Centre “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

123182; 115409; Moscow



О. А. Raznitsyn
National Research Centre “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

123182; 115409; Moscow



С. Е. Kirillov
National Research Centre “Kurchatov Institute”
Russian Federation

123182; Moscow



S. V. Rogozhkin
National Research Centre “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

123182; 115409; Moscow



References

1. Giddings A.D., Ramvall P., Vasen T., Afzalian A., Hwang R. // ASC Appl. Nano Mater. 2019. V. 2 (3). P. 1253–1258.

2. Rogozhkin S.V., Nikitin A.A., Khomich A.A., Lukyanchuk A.A., Raznitsyn O.A., Shutov A.S., Fedin P.A., Kulevoy T.V., Vasiliev A.L., Presniakov M.Yu., Möeslang A., Lindau R., P. Vladimirov // Nucl. Fusion. 2019. V. 59. P. 086018. doi: 10.1088/1741-4326/ab1e18

3. Lefebvre-Ulrikson W., Vurpillot F., Sauvage X. Atom Probe Tomography Put Theory into Practice. 2016. Amsterdam: Elsevier. P. 183–249. doi: 10.1016/B978-0-12-804647-0.00007-3

4. Bas P., Bostel A., Deconihout B., Blavette D. // Appl. Surf. Sci. 1995. V. 87. P. 298–304. doi: 10.1016/0169-4332(94)00561-3

5. Gault B., Moody M.P., Cairney J.M., Ringer S. Atom Probe Microscopy. 2012. London: Springer. doi: 10.1007/978-1-4614-3436-8

6. Gault B., Haley D., de Geuser F., Larson D.J., Marquis E.A., Geiser B.P. // Ultramicroscopy. 2011. V. 111 (6). P. 448–457. doi: 10.1016/j.ultramic.2010.11.016

7. Vurpillot F., Gruber M., Da Costa G., Martin I., Renaud L., Bostel A. // Ultramicroscopy. 2011. V. 111 (8). P. 1286–1294. doi: 10.1016/j.ultramic.2011.04.001

8. Larson D., Geiser B., Prosa T., Ulfig R., Kelly T. // Microsc. Microanal. 2011. V. 17 (S2). P. 740–741. doi: 10.1017/S1431927611004570

9. Gipson G.S. // J. Appl. Phys. 1980. V. 51. P. 3884. doi: 10.1063/1.328134.

10. Geiser B.P., Larson D.J., Oltman E., Gerstl S., Reinhard D., Kelly T.F., Prosa T.J. // Microsc. Microanal. 2009. V. 15 (S2). P. 292–293. doi: 10.1017/S1431927609098249

11. Renaud L. // Microsc. Microanal. 2003. V. 9 (S02). P. 566–567. doi: 10.1017/S1431927603442839

12. Renaud L., Monsallut P., Benard P., Saliot P., Costa G.D., Vurpillot F., Deconihout B. // Microsc. Microanal. 2006. V. 12. P. 1726–1727. doi: 10.1017/S1431927606063410

13. Miller M.K., Forbes R.G. Atom Probe Tomography: The Local Electrode Atom Probe. 2014. New York: Springer. doi: 10.1007/978-1-4899-7430-3

14. Hatzoglou C., Da Costa G., Vurpillot F. // Ultramicroscopy. 2019. V. 197. P. 72–82. doi: 10.1016/j.ultramic.2018.11.010

15. Gault B., Loi S.T., Araullo-Peters V.J., Stephenson L.T., Moody M.P., Shrestha S.L., Marceau R.K.W., Yao L., Cairney J.M., Ringer S.P. // Ultramicroscopy. 2011. V. 111. P. 1619–1624. doi: 10.1016/j.ultramic.2011.08.005

16. Loi S.T., Gault B., Ringer S.P., Larson D.J., Geiser B.P. // Ultramicroscopy. 2013. V. 132. P. 107–113. doi: 10.1016/j.ultramic.2012.12.012

17. Asi A. // Rev. Sci. Instrum. 2002. V. 73. P. 780. doi: 10.1063/1.1430867

18. Vurpillot F., Gaillard A., Da Costa G., Deconihout B. // Ultramicroscopy. 2013. V. 132. P. 152–157. doi: 10.1016/j.ultramic.2012.12.007

19. Рогожкин С.В., Алеев А.А., Лукьянчук А.А., Шутов А.С., Разницын О.А., Кириллов С.Е. // Приборы и техника эксперимента. 2017. № 3. С. 129–134. doi: 10.7868/S0032816217020227

20. Raznitsyn O.A., Lukyanchuk A.A., Shutov A.S., et al. // J. Anal. Chem. 2017. V. 72. No. 14. P. 1404. doi: 10.1134/S1061934817140118

21. Shutov A.S., Lukyanchuk A.A., Rogozhkin S.V., Raznitsyn O.A., Nikitin A.A., Aleev A.A., Kirillov S.E. // Phys. At. Nucl. 2019. V. 82. P. 1292–1301. doi: 10.1134/S1063778819090096

22. Software Certificate No. RU2018661876. http://www1.fips.ru/.


Review

For citations:


Lukyanchuk А.А., Aleev А.А., Shutov А.S., Raznitsyn О.А., Kirillov С.Е., Rogozhkin S.V. Atom Probe Tomography Data Reconstruction with the Correction on Material Density. Nuclear Physics and Engineering. 2022;13(3):272-279. (In Russ.) https://doi.org/10.56304/S2079562922010250

Views: 42


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)