Preview

Nuclear Physics and Engineering

Advanced search

Why Do We Need a Standard Theory of Scintillation Spectrometers with Several Photodetectors?

https://doi.org/10.56304/S2079562922010341

Abstract

   At present, scientists propose different formulas for the energy resolution of scintillation spectrometers, which sometimes contradict each other. The terms included in the formulas for the energy resolution differ not only in their names but also in the physical meaning. The main drawback of all of these theories of scintillation spectrometers is the unjustified introduction of different terms into the formula for the energy resolution without considering their connection with the specific characteristics of the scintillation detector. This approach is not only wrong but also counterproductive, since it does not allow comparison of the results obtained by different scientific groups. In this work, the drawbacks of the theories are analyzed on the basis of the standard theory of scintillation spectrometers with several photodetectors. It is shown that only the formulas of the standard theory for arbitrary moments of the output signal distribution function of the photodetectors of a scintillation spectrometer serve as a reliable basis for linking theoretical and experimental researches in the field of scintillator physics.

About the Author

V. V. Samedov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409; Moscow



References

1. Breitenberger E. // Progr. Nucl. Phys. 1995. V. 4. P. 56.

2. Birks J.B. The Theory and Practice of Scintillation Counting. 1967. London: Pergamon.

3. Moszyński M. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2016. V. 805. P. 25.

4. Lecoq P. et al. Inorganic Scintillators for Detector Systems. 2006. Berlin: Springer.

5. Knoll G.F. Radiation Detection and Measurement. 2000. New York: Wiley.

6. Grupen C., Shwartz B. Particle Detectors. 2008. New York: Cambridge Univ. Press.

7. Payne S.A. et al. // IEEE Trans. Nucl. Sci. 2009. V. 56. P. 2506.

8. Payne S.A. // IEEE Trans. Nucl. Sci. 2015. V. 62. P. 372.

9. Gektin A., Vasil’ev A. // Radiat. Meas. 2019. V. 122. P. 108.

10. Samedov V.V. // Phys. At. Nucl. 2021. V. 84. P. 1555. doi: 10.1134/S1063778821100331

11. Bousselham A. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2010. V. 620. P. 359.

12. Bora V. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2016. V. 805. P. 72.

13. Samedov V.V. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2012. V. 691. P. 168.

14. Samedov V.V. // X-Ray Spectrom. 2019. V. 48. P. 597.

15. Samedov V.V. Accounting for Fluctuations in Electron-Photon Showers in the Theory of Shower Spectrometers. Ph.D Thesis. 1972. MEPhI (in Russian).

16. Samedov V.V. // Instrum. Exp. Tech. 1985. V. 28. P. 580.

17. Samedov V.V. // Meas. Tech. 1985. V. 28. P. 265.

18. Samedov V.V. // EPJ Web Conf. 2020. V. 225. P. 01007.

19. Samedov V.V. // J. Low Temp. Phys. 2008. V. 151. P. 333.

20. Samedov V.V. // AIP Conf. Proc. 2009. V. 1185. P. 397.

21. Samedov V.V. // AIP Conf. Proc. 2009. V. 1185. P. 462.

22. Samedov V.V. // Phys. At. Nucl. 2019. V. 82. P. 1647. 2011. doi: 10.1134/S1063778819120263

23. Samedov V.V. // Proc. 2<sup>nd</sup> Int. Conf. Advancements in Nuclear Instrumentation, Measurement Methods and their Applications. Ghent, Belgium. 2011. doi: 10.1109/ANIMMA.2011.6172832.

24. Devanathan R. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2006. V. 565. P. 637.

25. Loudon R. The Quantum Theory of Light. 2000. New York: Oxford Univ. Press.


Review

For citations:


Samedov V.V. Why Do We Need a Standard Theory of Scintillation Spectrometers with Several Photodetectors? Nuclear Physics and Engineering. 2022;13(3):246-264. (In Russ.) https://doi.org/10.56304/S2079562922010341

Views: 47


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)