Measurements of Thermal Relaxation of the OGRAN Underground Setup
https://doi.org/10.56304/S2079562921010012
Abstract
An upgraded version of the OGRAN—combined optical-acoustic gravitational wave detector has been investigated in a long-term operation mode. This installation, located at the Baksan Neutrino Observatory (BNO), INR RAS, is designed to work under the program for detecting collapsing stars in parallel with the neutrino detector—Baksan Underground Scintillation Telescope (BUST). Such joint search corresponds to the modern trend for a development of “multichannel astronomy”. In this work the effects of thermal relaxation OGRAN are experimentally investigated using passive and active thermal stabilization systems in the underground laboratory BNO PK-14.
About the Authors
Y. M. GavrilyukRussian Federation
Moscow, 119991
Moscow, 117312
A. V. Gusev
Russian Federation
Moscow, 119991
N. L. Kvashnin
Russian Federation
Novosibirsk, 630090
A. A. Lugovoy
Russian Federation
Novosibirsk, 630090
S. I. Oreshkin
Russian Federation
Moscow, 119991
S. M. Popov
Russian Federation
Moscow, 119991
V. N. Rudenko
Russian Federation
Moscow, 119991
V. V. Semenov
Russian Federation
Moscow, 119991
I. A. Syrovatsky
Russian Federation
Moscow, 119991
References
1. Abbott B.P., Abbott R., Abbott T.D. et al. // Phys. Rev. Lett. 2017. V. 119. P. 161101.
2. Lipunov V.M. et al. // Astrophys. J. 2017. V. 850. P. L1.
3. Mayle R., Wilson J.R., Schramm D.N. // Astrophys J. 1987. V. 318. P. 288.
4. Bagaev S.N., Bezrukov L.B., Kvashnin N.L. et al. // Rev. Sci. Instrum. 2014. V. 85. P. 114.
5. Rudenko V.N. // Phys. Usp. 2017. V. 60. P. 830.
6. Rudenko V.N., Kvashnin N.L., Lugovoi A.A. et al. // Phys. At. Nucl. 2020. V. 83. No. 12. P. 1682–1690.
7. Novoseltsev Yu.F. et al. // J. Exp. Theor. Phys. 2017. V. 125. P. 73.
8. Rudenko V.N., Gavrilyuk Yu.M., Gusev A.V. et al. // Int. J. Mod. Phys. A. 2020. V. 35. P. 2040007. https://doi.org/10.1142/S0217751X20400072
9. Dimmelmeier H. et al. // Phys. Rev. D. 2008. V. 78. P. 064056.
10. Melson T. et al. // Astrophys. J. 2015. V. 808. P. L42.
11. Bisnovatyi-Kogan G.S., Moiseenko S.G. // Phys. Usp. 2017. V. 60. P. 843.
12. Drever R.W.P. et al. // Appl. Phys. 1983. V. 31. P. 97.
13. Будак Б.М., Самарский А.А.,Тихонов А.Н. Сборник задач по математической физике. 1979. Москва: Наука.
14. Малков М.П., Данилов И.Б., Зельдович А.Г., Фрадков А.Б. Справочник по физико-техническим основам криогеники (под ред. Малкова М.П., 3-е изд., перераб. и доп.). 1985. Москва: Энергоатомиздат.
15. Шахтарин Б.И., Ковригин В.А. Методы спектрального оценивания случайных процессов. 2011. Москва: Горячая линия − Телеком.
Review
For citations:
Gavrilyuk Y.M., Gusev A.V., Kvashnin N.L., Lugovoy A.A., Oreshkin S.I., Popov S.M., Rudenko V.N., Semenov V.V., Syrovatsky I.A. Measurements of Thermal Relaxation of the OGRAN Underground Setup. Nuclear Physics and Engineering. 2021;12(6):347-356. (In Russ.) https://doi.org/10.56304/S2079562921010012