Preview

Nuclear Physics and Engineering

Advanced search

Measurements of Thermal Relaxation of the OGRAN Underground Setup

https://doi.org/10.56304/S2079562921010012

Abstract

An upgraded version of the OGRAN—combined optical-acoustic gravitational wave detector has been investigated in a long-term operation mode. This installation, located at the Baksan Neutrino Observatory (BNO), INR RAS, is designed to work under the program for detecting collapsing stars in parallel with the neutrino detector—Baksan Underground Scintillation Telescope (BUST). Such joint search corresponds to the modern trend for a development of “multichannel astronomy”. In this work the effects of thermal relaxation OGRAN are experimentally investigated using passive and active thermal stabilization systems in the underground laboratory BNO PK-14.

About the Authors

Y. M. Gavrilyuk
Sternberg Astronomical Institute, Moscow State University; Baksan Neutrino Observatory, Institute for Nuclear Research, Russian Academy of Sciences
Russian Federation

Moscow, 119991

Moscow, 117312



A. V. Gusev
Sternberg Astronomical Institute, Moscow State University
Russian Federation

Moscow, 119991



N. L. Kvashnin
Institute of Laser Physics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Novosibirsk, 630090



A. A. Lugovoy
Institute of Laser Physics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Novosibirsk, 630090



S. I. Oreshkin
Sternberg Astronomical Institute, Moscow State University
Russian Federation

Moscow, 119991



S. M. Popov
Sternberg Astronomical Institute, Moscow State University
Russian Federation

Moscow, 119991



V. N. Rudenko
Sternberg Astronomical Institute, Moscow State University
Russian Federation

Moscow, 119991



V. V. Semenov
Sternberg Astronomical Institute, Moscow State University
Russian Federation

Moscow, 119991



I. A. Syrovatsky
Sternberg Astronomical Institute, Moscow State University
Russian Federation

Moscow, 119991



References

1. Abbott B.P., Abbott R., Abbott T.D. et al. // Phys. Rev. Lett. 2017. V. 119. P. 161101.

2. Lipunov V.M. et al. // Astrophys. J. 2017. V. 850. P. L1.

3. Mayle R., Wilson J.R., Schramm D.N. // Astrophys J. 1987. V. 318. P. 288.

4. Bagaev S.N., Bezrukov L.B., Kvashnin N.L. et al. // Rev. Sci. Instrum. 2014. V. 85. P. 114.

5. Rudenko V.N. // Phys. Usp. 2017. V. 60. P. 830.

6. Rudenko V.N., Kvashnin N.L., Lugovoi A.A. et al. // Phys. At. Nucl. 2020. V. 83. No. 12. P. 1682–1690.

7. Novoseltsev Yu.F. et al. // J. Exp. Theor. Phys. 2017. V. 125. P. 73.

8. Rudenko V.N., Gavrilyuk Yu.M., Gusev A.V. et al. // Int. J. Mod. Phys. A. 2020. V. 35. P. 2040007. https://doi.org/10.1142/S0217751X20400072

9. Dimmelmeier H. et al. // Phys. Rev. D. 2008. V. 78. P. 064056.

10. Melson T. et al. // Astrophys. J. 2015. V. 808. P. L42.

11. Bisnovatyi-Kogan G.S., Moiseenko S.G. // Phys. Usp. 2017. V. 60. P. 843.

12. Drever R.W.P. et al. // Appl. Phys. 1983. V. 31. P. 97.

13. Будак Б.М., Самарский А.А.,Тихонов А.Н. Сборник задач по математической физике. 1979. Москва: Наука.

14. Малков М.П., Данилов И.Б., Зельдович А.Г., Фрадков А.Б. Справочник по физико-техническим основам криогеники (под ред. Малкова М.П., 3-е изд., перераб. и доп.). 1985. Москва: Энергоатомиздат.

15. Шахтарин Б.И., Ковригин В.А. Методы спектрального оценивания случайных процессов. 2011. Москва: Горячая линия − Телеком.


Review

For citations:


Gavrilyuk Y.M., Gusev A.V., Kvashnin N.L., Lugovoy A.A., Oreshkin S.I., Popov S.M., Rudenko V.N., Semenov V.V., Syrovatsky I.A. Measurements of Thermal Relaxation of the OGRAN Underground Setup. Nuclear Physics and Engineering. 2021;12(6):347-356. (In Russ.) https://doi.org/10.56304/S2079562921010012

Views: 19


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)