Preview

Nuclear Physics and Engineering

Advanced search

Search for the Electric Dipole Moment of a Deuteron Using a Storage Ring

https://doi.org/10.56304/S2079562920060019

Abstract

One of the alternatives to the Standard Model (SM) of elementary particles is the supersymmetry theories; the electric dipole moment (EDM) of elementary particles can serve as an excellent tool to confirm the validity of one of these models. For example: in the case of a neutron, the EDM, compatible with the SM, is within a range of 10−33 to 10−30 e cm, whereas the supersymmetry theories predict the presence of an EDM of much larger value, at the level of 10−29–10−24 e cm. Experiments on the search for EDM have been carried out for more than 50 years; however, most of them are based on charge-neutral particles (neutron, atoms). The EDM of charged particles (proton, deuteron) can be measured in a storage ring with the use of the phenomenon of the beam polarization precession in an electromagnetic field. The storage ring has a number of advantages when used as a tool for EDM measurement; however, there are also a number of problems. This paper discusses the main approaches to solving these problems: the BNL, spin wheel, and frequency domain methods.

About the Author

A. E. Aksentev
Institute for Nuclear Research, Russian Academy of Sciences
Russian Federation

Moscow, 117312



References

1. Canetti L., Drewes M., Shaposhninkov M . // New J. Phys. 2012. V. 14. P. 095012. https://doi.org/10.1088/1367-2630/14/9/095012

2. Fixsen D.J., Dwek E., Mather J.C., Bennett C.L., Shafer R.A. // Astrophys. J. 1998. V. 508. P. 123. https://doi.org/10.1086/306383

3. Hinshaw G., Larson D., Komatsu E. et al. // J. Suppl. Ser. 2013. V. 208. P. 19. https://doi.org/10.1088/0067-0049/208/2/19

4. Sakharov A. // J. Exp. Theor. Phys. 1967. V. 5. P. 24.

5. Mohapatra R.N., Pati J.C. // Phys. Rev. D. 1975. V. 11. P. 2558. https://doi.org/10.1103/PhysRevD.11.2558

6. Maniatis M. // Int. J. Mod. Phys. A. 2010. V. 25. P. 3505. https://doi.org/10.1142/S0217751X10049827

7. Smith J.H., Purcell E.M., Ramsey N.F. // Phys. Rev. 1957. V. 108. P. 120. https://doi.org/10.1103/PhysRev.108.120

8. Anastassopoulos D. et al. Brookhaven National Laboratory Report. 2008. https://www.bnl.gov/edm/files/pdf/deuteron_proposal_080423_final.pdf.

9. Morse W.M., Orlov Y.F., Semertzidis Y.K. // Phys. Rev. ST Accel. Beams. 2013. V. 16. P. 114001. https://doi.org/10.1103/PhysRevSTAB.16.114001.

10. Saleev A., Nikolaev N.N., Rathmann F. et al. // Phys. Rev. Accel. Beams. 2017. V. 20. P. 072801. https://doi.org//10.1103/PhysRevAccelBeams.20.072801

11. Koop I.A. // Phys. Scr. 2015. V. 2015. P. 014034. https://doi.org/10.1088/00318949/2015/T166/014034/meta

12. Kawall D . Report at 485 WE-Heraeus EDM Seminar. Bad Honnef. 2011.

13. Aksentev A.E., Senichev Y.V. // J. Phys.: Conf. Ser. 2020. V. 1435. P. 012026. https://doi.org/10.1088/1742-6596/1435/1/012026/pdf

14. Aksentev A., Senichev Y. Proc. 10th Intl. Particle Accelerator Conference IPAC'19. May 19–24, 2019. Melbourne, Australia. 2019. P. 858. https://ipac2019.vrws.de/papers/mopts010.pdf.


Review

For citations:


Aksentev A.E. Search for the Electric Dipole Moment of a Deuteron Using a Storage Ring. Nuclear Physics and Engineering. 2021;12(6):333-336. (In Russ.) https://doi.org/10.56304/S2079562920060019

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)