Поиск электрического дипольного момента дейтрона с использованием накопительного кольца
https://doi.org/10.56304/S2079562920060019
Аннотация
Одной из альтернатив Стандартной Модели (СМ) элементарных частиц являются теории суперсимметрии; электрический дипольный момент (ЭДМ) элементарных частиц может служить отличным инструментом для подтверждения валидности одной из этих моделей. К примеру: в случае нейтрона, ЭДМ, совместный с СМ, находится в диапазоне 10-33 до 10-33e см, в то время как теории суперсимметрии предсказывают наличие ЭДМ гораздо большей величины – на уровне 10-29 – 10-24e см. Эксперименты по поиску ЭДМ проводятся больше 50-ти лет, однако большинство из них — на зарядово-нейтральных частицах (нейтрон, атомы). ЭДМ заряженных частиц (протон, дейтрон) можно измерить в накопительном кольце, используя феномен прецессии поляризации пучка в электромагнитном поле. Накопительное кольцо обладает рядом преимуществ при его использовании в качестве инструмента для измерения ЭДМ; однако существует также и ряд проблем. В данной работе рассматриваются основные подходы к решению этих проблем: BNL, Spin Wheel, Frequency Domain методы.
Список литературы
1. Canetti L., Drewes M., Shaposhninkov M . // New J. Phys. 2012. V. 14. P. 095012. https://doi.org/10.1088/1367-2630/14/9/095012
2. Fixsen D.J., Dwek E., Mather J.C., Bennett C.L., Shafer R.A. // Astrophys. J. 1998. V. 508. P. 123. https://doi.org/10.1086/306383
3. Hinshaw G., Larson D., Komatsu E. et al. // J. Suppl. Ser. 2013. V. 208. P. 19. https://doi.org/10.1088/0067-0049/208/2/19
4. Sakharov A. // J. Exp. Theor. Phys. 1967. V. 5. P. 24.
5. Mohapatra R.N., Pati J.C. // Phys. Rev. D. 1975. V. 11. P. 2558. https://doi.org/10.1103/PhysRevD.11.2558
6. Maniatis M. // Int. J. Mod. Phys. A. 2010. V. 25. P. 3505. https://doi.org/10.1142/S0217751X10049827
7. Smith J.H., Purcell E.M., Ramsey N.F. // Phys. Rev. 1957. V. 108. P. 120. https://doi.org/10.1103/PhysRev.108.120
8. Anastassopoulos D. et al. Brookhaven National Laboratory Report. 2008. https://www.bnl.gov/edm/files/pdf/deuteron_proposal_080423_final.pdf.
9. Morse W.M., Orlov Y.F., Semertzidis Y.K. // Phys. Rev. ST Accel. Beams. 2013. V. 16. P. 114001. https://doi.org/10.1103/PhysRevSTAB.16.114001.
10. Saleev A., Nikolaev N.N., Rathmann F. et al. // Phys. Rev. Accel. Beams. 2017. V. 20. P. 072801. https://doi.org//10.1103/PhysRevAccelBeams.20.072801
11. Koop I.A. // Phys. Scr. 2015. V. 2015. P. 014034. https://doi.org/10.1088/00318949/2015/T166/014034/meta
12. Kawall D . Report at 485 WE-Heraeus EDM Seminar. Bad Honnef. 2011.
13. Aksentev A.E., Senichev Y.V. // J. Phys.: Conf. Ser. 2020. V. 1435. P. 012026. https://doi.org/10.1088/1742-6596/1435/1/012026/pdf
14. Aksentev A., Senichev Y. Proc. 10th Intl. Particle Accelerator Conference IPAC'19. May 19–24, 2019. Melbourne, Australia. 2019. P. 858. https://ipac2019.vrws.de/papers/mopts010.pdf.
Рецензия
Для цитирования:
Аксентьев А.Е. Поиск электрического дипольного момента дейтрона с использованием накопительного кольца. Ядерная физика и инжиниринг. 2021;12(6):333-336. https://doi.org/10.56304/S2079562920060019
For citation:
Aksentev A.E. Search for the Electric Dipole Moment of a Deuteron Using a Storage Ring. Nuclear Physics and Engineering. 2021;12(6):333-336. (In Russ.) https://doi.org/10.56304/S2079562920060019