Preview

Nuclear Physics and Engineering

Advanced search

In Vivo Studies of Laser-Ablated Gold Nanoparticles as Dose Enhancers for Binary Radiotherapy of Cancer

https://doi.org/10.56304/S2079562922030502

Abstract

Gold nanoparticles (GNPs) are actively used as a dose enhancement agent in combination with X-ray irradiation. The synthesis of gold nanoparticles by laser ablation has a number of advantages over other methods. For example, the possibility of creating a chemically pure solution and a relatively low production cost when synthesis is scaled up. In this work, we studied an antitumor effect from the combined use of gold nanoparticles (synthesized by laser ablation) and X-rays. Mice with syngeneic adenocarcinoma Ca755, transplanted subcutaneously, were used for the study. The tumor was irradiated at a dose of 10 Gy in 30 min post injection of GNPs. As a result, 66% of complete regressions were found in the experimental group of animals within 210 days from the moment of inoculation. There were no regressions of tumor in the control irradiated group. The absorbed dose to the walls of tumor vessels in the presence of gold nanoparticles in the bloodstream was evaluated as 26.8 Gy.

About the Authors

V. A. Skribitsky
Blokhin National Medical Research Centre of Oncology, Ministry of Health of the Russian Federation; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115478, Moscow, 115409



Yu. A. Finogenova
Blokhin National Medical Research Centre of Oncology, Ministry of Health of the Russian Federation; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115478, Moscow, 115409



A. A. Lipengolts
Blokhin National Medical Research Centre of Oncology, Ministry of Health of the Russian Federation; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Burnasyan Federal Medical Biophysical Centre, Federal Medical Biological Agency of Russia (FMBA)
Russian Federation

Moscow, 115478, Moscow, 115409, Moscow, 123098



N. V. Pozdniakova
Blokhin National Medical Research Centre of Oncology, Ministry of Health of the Russian Federation; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115478, Moscow, 115409



A. V. Smirnova
Blokhin National Medical Research Centre of Oncology, Ministry of Health of the Russian Federation; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Loginov Moscow Clinical Research Practical Centre of the Moscow Healthcare Department
Russian Federation

Moscow, 115478, Moscow, 115409, Moscow, 111123



K. E. Shpakova
Blokhin National Medical Research Centre of Oncology, Ministry of Health of the Russian Federation; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115478, Moscow, 115409



E. Yu. Grigorieva
Blokhin National Medical Research Centre of Oncology, Ministry of Health of the Russian Federation; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115478, Moscow, 115409



References

1. Gao Q., Zhang J., Gao J., et al. // Front. Bioeng. Biotechnol. 2021. V. 9. P. 1.

2. Medici S., Peana M., Coradduzza D., et al. // Seminars in Cancer Biology. 2021. New York: Academic. V. 76. P. 27.

3. Kulakov V.N., Lipengolts A.A., Grigorieva E.Yu., et al. // Zh Oncol.: Diag. Radiol. Radiother. 2018. V. 1 (4). P. 82 (in Russian).

4. Kulakov V.N., Lipengol’ts A.A., Grigor’eva E.Y., et al. // Pharmaceut. Chem. J. 2016. V. 50 (6). P. 388.

5. Sani A., Cao C., Cui D. // Biochem. Biophys. Rep. 2021. V. 26. P. 100991.

6. Goddard Z.R., Marín M.J., Russell D.A., et al. // Chem. Soc. Rev. 2020. V. 49 (23). P. 8774.

7. Hainfeld J.F., Smilowitz H.M., O’Connor M.J., et al. // Nanomedicine. 2013. V. 8 (10). P. 1601.

8. Chen Y., Yang J., Fu S., et al. // Int. J. Nanomed. 2020. V. 15. P. 9407.

9. Jendrzej S., Gökce B., Epple M., et al. // Chem. Phys. Chem. 2017. V. 18 (9). P. 1012.

10. Popov A.A., Zelepukin I.V., Tikhonowski G.V., et al. // J. Phys.: Conf. Ser. 2021. V. 2058 (1). P. 012004.

11. Skribitsky V.A., Pozdniakova N.V., Lipengolts A.A., et al. // Biophysics. 2022. V. 67 (1). P. 22.

12. Rosa S., Connolly C., Schettino G., et al. // Cancer Nanotechnol. 2017. V. 8 (1). P. 1.

13. Cui L., Her S., Borst G.R., et al. // Radiother. Oncol. 2017. V. 124 (3). P. 344.

14. Hainfeld J.F., O’Connor M.J., Dilmanian F.A., et al. // Brit. J. Radiol. 2011. V. 84 (1002). P. 526.

15. Roeske J.C., Nunez L., Hoggarth M., et al. // Technol. Cancer Res. Treatm. 2007. V. 6 (5). P. 395.

16. Lipengolts A.A., Vorobyeva E.S., Finogenova Yu.A., et al. // Med. Phys. 2019. V. 84 (4). P. 16 (in Russian).

17. Schamberg J.A. Y.F. // Arch. Dermatol. Syphilol. 1928. V. 18 (6). P. 862.

18. Fleming C.J., Salisbury E.L., Kirwan P., et al. // J. Am. Acad. Dermatol. 1996. V. 34 (2). P. 349.


Review

For citations:


Skribitsky V.A., Finogenova Yu.A., Lipengolts A.A., Pozdniakova N.V., Smirnova A.V., Shpakova K.E., Grigorieva E.Yu. In Vivo Studies of Laser-Ablated Gold Nanoparticles as Dose Enhancers for Binary Radiotherapy of Cancer. Nuclear Physics and Engineering. 2022;13(6):605-610. (In Russ.) https://doi.org/10.56304/S2079562922030502

Views: 31


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)