In Vivo Studies of Laser-Ablated Gold Nanoparticles as Dose Enhancers for Binary Radiotherapy of Cancer
https://doi.org/10.56304/S2079562922030502
Abstract
Gold nanoparticles (GNPs) are actively used as a dose enhancement agent in combination with X-ray irradiation. The synthesis of gold nanoparticles by laser ablation has a number of advantages over other methods. For example, the possibility of creating a chemically pure solution and a relatively low production cost when synthesis is scaled up. In this work, we studied an antitumor effect from the combined use of gold nanoparticles (synthesized by laser ablation) and X-rays. Mice with syngeneic adenocarcinoma Ca755, transplanted subcutaneously, were used for the study. The tumor was irradiated at a dose of 10 Gy in 30 min post injection of GNPs. As a result, 66% of complete regressions were found in the experimental group of animals within 210 days from the moment of inoculation. There were no regressions of tumor in the control irradiated group. The absorbed dose to the walls of tumor vessels in the presence of gold nanoparticles in the bloodstream was evaluated as 26.8 Gy.
About the Authors
V. A. SkribitskyRussian Federation
Moscow, 115478, Moscow, 115409
Yu. A. Finogenova
Russian Federation
Moscow, 115478, Moscow, 115409
A. A. Lipengolts
Russian Federation
Moscow, 115478, Moscow, 115409, Moscow, 123098
N. V. Pozdniakova
Russian Federation
Moscow, 115478, Moscow, 115409
A. V. Smirnova
Russian Federation
Moscow, 115478, Moscow, 115409, Moscow, 111123
K. E. Shpakova
Russian Federation
Moscow, 115478, Moscow, 115409
E. Yu. Grigorieva
Russian Federation
Moscow, 115478, Moscow, 115409
References
1. Gao Q., Zhang J., Gao J., et al. // Front. Bioeng. Biotechnol. 2021. V. 9. P. 1.
2. Medici S., Peana M., Coradduzza D., et al. // Seminars in Cancer Biology. 2021. New York: Academic. V. 76. P. 27.
3. Kulakov V.N., Lipengolts A.A., Grigorieva E.Yu., et al. // Zh Oncol.: Diag. Radiol. Radiother. 2018. V. 1 (4). P. 82 (in Russian).
4. Kulakov V.N., Lipengol’ts A.A., Grigor’eva E.Y., et al. // Pharmaceut. Chem. J. 2016. V. 50 (6). P. 388.
5. Sani A., Cao C., Cui D. // Biochem. Biophys. Rep. 2021. V. 26. P. 100991.
6. Goddard Z.R., Marín M.J., Russell D.A., et al. // Chem. Soc. Rev. 2020. V. 49 (23). P. 8774.
7. Hainfeld J.F., Smilowitz H.M., O’Connor M.J., et al. // Nanomedicine. 2013. V. 8 (10). P. 1601.
8. Chen Y., Yang J., Fu S., et al. // Int. J. Nanomed. 2020. V. 15. P. 9407.
9. Jendrzej S., Gökce B., Epple M., et al. // Chem. Phys. Chem. 2017. V. 18 (9). P. 1012.
10. Popov A.A., Zelepukin I.V., Tikhonowski G.V., et al. // J. Phys.: Conf. Ser. 2021. V. 2058 (1). P. 012004.
11. Skribitsky V.A., Pozdniakova N.V., Lipengolts A.A., et al. // Biophysics. 2022. V. 67 (1). P. 22.
12. Rosa S., Connolly C., Schettino G., et al. // Cancer Nanotechnol. 2017. V. 8 (1). P. 1.
13. Cui L., Her S., Borst G.R., et al. // Radiother. Oncol. 2017. V. 124 (3). P. 344.
14. Hainfeld J.F., O’Connor M.J., Dilmanian F.A., et al. // Brit. J. Radiol. 2011. V. 84 (1002). P. 526.
15. Roeske J.C., Nunez L., Hoggarth M., et al. // Technol. Cancer Res. Treatm. 2007. V. 6 (5). P. 395.
16. Lipengolts A.A., Vorobyeva E.S., Finogenova Yu.A., et al. // Med. Phys. 2019. V. 84 (4). P. 16 (in Russian).
17. Schamberg J.A. Y.F. // Arch. Dermatol. Syphilol. 1928. V. 18 (6). P. 862.
18. Fleming C.J., Salisbury E.L., Kirwan P., et al. // J. Am. Acad. Dermatol. 1996. V. 34 (2). P. 349.
Review
For citations:
Skribitsky V.A., Finogenova Yu.A., Lipengolts A.A., Pozdniakova N.V., Smirnova A.V., Shpakova K.E., Grigorieva E.Yu. In Vivo Studies of Laser-Ablated Gold Nanoparticles as Dose Enhancers for Binary Radiotherapy of Cancer. Nuclear Physics and Engineering. 2022;13(6):605-610. (In Russ.) https://doi.org/10.56304/S2079562922030502