Preview

Nuclear Physics and Engineering

Advanced search

Optical Emission Spectroscopy for Studying the Region of Interaction between a Plasma Flow and a Tungsten Sample

https://doi.org/10.56304/S2079562922030198

Abstract

This work proposes methods for processing optical emission spectroscopy data obtained from the interaction region of helium plasma with the main gas concentration [He] ≈ 1012–1014 cm–3 and electron density ne ≈ 1011–1013 cm–3 with a tungsten sample at the PLM installation created for studying materials under plasma impact. We proposed a method for determining the temperature of the electrons using the coronal approximation. The calculation is performed on spectral lines with intensity ratio most sensitive to electron temperature variation. For our case it is ion-to-atomic line intensity ratio. We have found that relation of experimental intensities of ion line He II 468.5 nm and a number of atom lines He I with well-known electron excitation constants to the calculated values of this relation for the average electron energy is a reliable method of spectroscopic determination of electron temperature of rarefied magnetized helium plasma. For these experiment conditions: helium concentration [He] ≈ 1014 cm–3, discharge current 2–10 A, voltage drop 160– 180 V, discharge radius 16 mm and length 370 mm the value of electron temperature found from two singlet and two triplet He I lines was Te = 2.5 ± 0.3 eV. Taking into account nonlocality of electron energy distribution function (EEDF), complex nature of charge drift and diffusion in crossing and inhomogeneous electric and magnetic fields and other phenomena, the average electron energy = (3/2)kTe 3.6 eV matching this temperature can be considered a lower-bound estimate for the energy of the Maxwell region of EEDF of the plasma under study.

About the Authors

D. I. Kavyrshin
Moscow Power Engineering Institute (MPEI); Joint Institute for High Temperatures of the Russian Academy of Sciences
Russian Federation

 Moscow, 111250, 

Moscow, 125412



V. P. Budaev
Moscow Power Engineering Institute (MPEI); National Research Centre “Kurchatov Institute”
Russian Federation

 Moscow, 111250, 

Moscow, 123182



S. D. Fedorovich
Moscow Power Engineering Institute (MPEI)
Russian Federation

 Moscow, 111250



А. V. Karpov
Moscow Power Engineering Institute (MPEI); National Research Centre “Kurchatov Institute”
Russian Federation

Moscow, 111250, 

Moscow, 123182



V. F. Chinnov
Joint Institute for High Temperatures of the Russian Academy of Sciences
Russian Federation

Moscow, 125412



M. V. Lukashevsky
Moscow Power Engineering Institute (MPEI)
Russian Federation

 Moscow, 111250



Q. V. Tran
Moscow Power Engineering Institute (MPEI)
Russian Federation

 Moscow, 111250



E. A. Muravieva
Moscow Power Engineering Institute (MPEI); Joint Institute for High Temperatures of the Russian Academy of Sciences
Russian Federation

 Moscow, 111250, 

Moscow, 125412



A. S. Myazin
Moscow Power Engineering Institute (MPEI); Joint Institute for High Temperatures of the Russian Academy of Sciences
Russian Federation

 Moscow, 111250, 

Moscow, 125412



A. A. Konkov
Moscow Power Engineering Institute (MPEI)
Russian Federation

 Moscow, 111250



K. A. Rogozin
Moscow Power Engineering Institute (MPEI)
Russian Federation

 Moscow, 111250



References

1. Будаев В.П., Федорович С.Д., Мартыненко Ю.В., Лукашевский М.В., Губкин М.К., Карпов А.В., Лазукин А.В., Шестаков Е.А., Кавыршин Д.И., Рогозин К.С. // Ядерная физика и инжиниринг. 2018. Т. 9 (3). С. 283−294. https://doi.org/10.1134/S207956291803003X [Budaev V.P., Fedorovich S.D., Lukashevsky M.V., Gubkin M.K., Lazukin A.V., Kavyrshin D.I., Rogozin K.S. // Phys. At. Nucl. 2019. V. 82. P. 1281–1291. https://doi.org/10.1134/S1063778819090023].

2. Магунов А.Н. // Спектральная пирометрия. 2012. Москва: Физматлит.

3. Korshunov O.V., Chinnov V.F., Kavyrshin D.I. // High Temp. 2019. V. 57. 147–155. https://doi.org/10.1134/S0018151X18060147

4. Korshunov O.V., Chinnov V.F., Kavyrshin D.I. // High Temp. 2019. V. 57. P. 308–315. https://doi.org/10.1134/S0018151X19020081

5. Lochte-Holtgreven W. (ed.) Plasma Diagnostics. 1968. Amsterdam: North Holland.

6. Ochkin V.N. Spectroscopy of Low Temperature Plasma. 2009. Weinheim: Wiley-VCH.

7. Biberman L.M., Vorob’ev V.S., Yakubov I.T. Kinetics of Nonequilibrium Low-Temperature Plasmas. 1987. Berlin: Springer.

8. Kramida A., Ralchenko Yu., Reader J., NIST ASD Team. NIST Atomic Spectra Database (ver. 5.9). 2021. Gaithersburg, MD: Natl. Inst. Standards Technol. https://physics.nist.gov/asd https://doi.org/10.18434/T4W30F

9. Cross Section Database for Helium. NIFS-DATA059. 2000. Natl. Inst. Fusion Sci.

10. Van Eden G.G., Kvon V., van de Sanden M.C.M., Morgan T.W. // Nat. Commun. 2017. V. 8. P. 192. https://doi.org/10.1038/s41467-017-00288-y

11. Pigarov A.Y. // Phys. Scr. 2002. V. 96. P. 16–31.


Review

For citations:


Kavyrshin D.I., Budaev V.P., Fedorovich S.D., Karpov А.V., Chinnov V.F., Lukashevsky M.V., Tran Q.V., Muravieva E.A., Myazin A.S., Konkov A.A., Rogozin K.A. Optical Emission Spectroscopy for Studying the Region of Interaction between a Plasma Flow and a Tungsten Sample. Nuclear Physics and Engineering. 2022;13(6):569-576. https://doi.org/10.56304/S2079562922030198

Views: 42


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)