On Critical Behavior of Metals, Actinides and Plutonium Metal on High-Intensity Exposure
https://doi.org/10.56304/S2079562922030447
Abstract
The paper is devoted to establishing of general regularities of dynamic destructions (those of dynamic failure and dispersion) in metals, under high intensity external action in the dynamic range of nonequilibrium states t ~ 10–6–10–9 s. Using a crystal lattice pair potential, there is determined an expression for compressibility (susceptibility) of a loaded sample that depends on failure centers density. Determining of common relaxation attributes for non-equilibrium systems allows prediction of unstudied systems’ behavior. Predicted is behavior of plutonium metal, thorium, uranium in the range of non-equilibrium states t ~ 10–6– 10–9 s, Е ~ 30–300 J/g using established temporal invariant of metals behavior under extreme conditions and experimental data on critical pressure, causing failure of plutonium metal.
About the Authors
N. I. Sel’chenkovaRussian Federation
Sarov, Nizhny Novgorod oblast, 607188
A. Ya. Uchaev
Russian Federation
Sarov, Nizhny Novgorod oblast, 607188
References
1. KoshelevaE.V.,PuninV.T., SelchenkovaN.I.,UchaevA.Ya. General Regularities of Hierarchy Processes in Metals under Penetrating Radiation Pulses. 2015. Sarov: RFNC-VNIIEF (in Russian)
2. Kosheleva E.V., Sel’chenkova N.I., Uchaev A.Ya. // Phys. At. Nucl. 2021. V. 84. P. 2022–2033.
3. Bazarov I.P. Termodinamika [Thermodynamics. Tutorial for Universities. 2nd ed.]. 1976. Moscow: Vysshaya Shkola (in Russian).
4. Stenly G. Phase Transitions and Critical Phenomena. 1973. Moscow: Nauka (in Russian).
5. Kosheleva E.V., Selchenkova N.I., Sokolov S.S., Trunin I.R., Uchaev A.Ya. // Proc. Int. Conf. 22nd Khariton Scientific Lectures. Supercomputer Simulation and Artificial Intellect. 2021. Sarov: RFNC-VNIIEF. P. 70–72 (in Russian).
6. Physics Encyclopedia. Ed. by Prokhorov A.M. 1988. Moscow: Sov. Entsyklopediya (in Russian)
7. Prigozhin I., Nikolis G. Exploring Complexity: An Introduction. 1989. New York: Freeman and Comp.
8. Koverda V.P., Skokov V.N. // J. Appl. Mech. Tech. Phys. 2021. V. 62. P. 912.
9. Stakhovskii I.R., Belousov T.P. // Dokl. Akad. Nauk. 1996. V. 347. P. 252 (in Russian).
10. Kosheleva E.V., Selchenkova N.I., Sokolov S.S., Trunin I.R., Uchaev A.Ya. // Phys. At. Nucl. 2020. V. 83 (11). P. 1585–1596.
11. Il’kayev R.I., Punin V.T., Uchaev A.Ya., Novikov S.A., Kosheleva E.V., Platonova L.A., Selchenkova N.I., Yukina N.A. // Dokl. Akad. Nauk. 2003. V. 393 (3). P. 326– 331 (in Russian).
12. Romashev R.V., Fedotov V.V. // Zavod. Labor. 1975. No. 2. P. 229–232 (in Russian).
13. Statsenko V.P., Yanilkin Yu.V., Rebrov S.V., Sin’kova O.G., Stadnik A.L., Selchenkova N.I., Uchaev A.Ya. // Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Prots. 2002. No. 2. P. 18–29 (in Russian).
14. Linden P.F., Redondo J.M., Youngs D.L. // J. Fluid Mech. 1994. V. 265. P. 97–124.
15. Kolesnichenko A.V., Marov M.Ya. Turbulence and SelfOrganization. Problems of Simulation of Cosmic and Natural Environment. 2012. Moscow: Labor. Znaniy (in Russian).
16. Bak P. How Nature Works: Theory of Self-Organized Criticality. 2014. Moscow: Librokom (in Russian).
17. Scho’ll E. Nonequilibrium Phase Transitions in Semiconductors: Self-Organization Induced by Generation and Recombination Processes. 2012. New York: Springer Science.
18. Feigenbaum M. // Usp. Fiz. Nauk. 1983. V. 141 (2). P. 343–374 (in Russian).
19. Golubev V.K., Sobolev Yu.S., Trunin I.R. // Probl. Prochn. 1998. No. 5. P. 100–105 (in Russian).
20. Seleznev A.G., Kosulin N.S., et al. // Radiokhimiya. 1995. V. 37. P. 488 (in Russian).
21. Shtremel’ M.A. Strength of Alloys. Part I. Lattice Defects: Text Book for Higher School. 1999. Moscow: MISIS (in Russian).
Review
For citations:
Sel’chenkova N.I., Uchaev A.Ya. On Critical Behavior of Metals, Actinides and Plutonium Metal on High-Intensity Exposure. Nuclear Physics and Engineering. 2022;13(6):558-568. https://doi.org/10.56304/S2079562922030447