Preview

Nuclear Physics and Engineering

Advanced search

Modification of Carbon–Carbon Composite Materials under High-Fluence Irradiation of Fusion Plasma Ions

https://doi.org/10.56304/S2079562922030034

Abstract

The modification of carbon-carbon composite materials under high fluence (>3 · 1018 cm–2) irratiation with He+, Ne+, Ar+ and C+ ions with an energies of 10–30 keV at irradiation temperatures from room temperature to 600°C has been studied experimentally. It is shown that irradiation of carbon fibers with the ion energies of tens keV allows to imitate radiation damage in graphites with levels of radiation damage up to several hundred displacements per atom (dpa), and makes it possible to simultaneously study the effect of ion irradiation at different angles of incidence on plasma-facing materials of fusion plants. The irradiation with helium ions is appropriate for imitation of radiation damage under mechanical stress conditions which include both compression and stretching. Irradiation with heavier ions of noble gas ions (Ne, Ar) is applicable to imitation of mechanical stresses of compression. Temperature dependences of the ion-induced electron emission reflect the surface texture of graphite materials and can be used as a method of in-situ control of the fiber shell texture.

About the Authors

N. N. Andrianova
Moscow Aviation Institute (National Research University)
Russian Federation

Moscow, 125993



A. M. Borisov
Moscow Aviation Institute (National Research University); Moscow State Technological University “STANKIN”
Russian Federation

Moscow, 125993,

Moscow, 127055



E. S. Mashkova
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Russian Federation

Moscow, 119991



M. А. Ovchinnikov
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Russian Federation

Moscow, 119991



References

1. Atomic and Plasma-Material Interaction Data for Fusion. 1991. Vienna: IATA. V. 1.

2. Temmerman G.D., Heinola K., Borodin D. et al. // Nucl. Mater. Energy. 2021. V. 27. P. 100994.

3. Eckstein W., Bohdansky J., Roth J. Physical Sputtering. 1991. Vienna: IATA. V. 1. P. 51–62.

4. Merola M., Escourbiac F., Raffray R., Chappuis P., Hirai T., Martin A. // Fusion Eng. Des. 2014. V. 89. P. 890–895.

5. Ding F., Luo G.-N., Chen X., et al. // Tungsten. 2019. V. 1. P. 122–131.

6. Khvostenko P.P., Anashkin I.O., Bondarchuk E.N., et al. // Fusion Eng. Des. A. 2019. V. 146. P. 1108–1112.

7. Marsden B.J., Hall G.N. // Comp. Nucl. Mater. 2012. V. 4. P. 325–390.

8. Guérin Y., Was G.S., Zinkle S.J., Editors G. // Mater. Res. Soc. Bull. 2009. V. 34. P. 10–14.

9. Was G.S. // J. Nucl. Mater. 2007. V. 367–370. P. 11–20.

10. Virgil’ev Yu.S., Kalyagina I.P. // Inorg. Mater. 2004. V. 40. P. S33–S49.

11. Burchell T.D. // MRS Bull. 1997. V. 22. P. 29–35.

12. Was G.S. Fundamentals of Radiation Materials Science, 2nd ed. 2014. New York: Springer-Verlag.

13. Galy N., Toulhoat N., Moncoffre N. et al. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2017. V. 409. P. 235–240.

14. Liu D., Cherns D., Johns S., et al. // Carbon. 2021. V. 173. P. 215–231.

15. Behrisch R. Particle Bombardment and Energy Fluxes to the Vessel Walls in Controlled Thermonuclear Fusion Devices. 1991. Vienna: IAEA. V. 1. P. 7–16.

16. Andrianova N.N., Borisov A.M., Mashkova E.S., et al. // Horizons in World Physics. 2013. New York: Nova Science. V. 280. P. 171.

17. Mashkova E.S., Molchanov V.A. Medium-Energy Ion Reflection from Solids. 1985. Amsterdam: North-Holland.

18. Niwase K., Tanabe T. // J. Nucl. Mater. 1991. V. 179– 181. P. 218–222.

19. Andrianova N.N., Borisov A.M., Mashkova E.S., et al. // Vacuum. 2021. V. 188. P. 110177.

20. Andrianova N.N., Borisov A.M., Makunin A.V., et al. // Proc. 25th Int. Conf. Ion Surface Interactions. 2021. V. 2. P. 35–38.

21. Аникин В.А., Борисов А.М., Макунин А.В., Машкова Е.С., Овчинников М.А. // Ядерная физика и инжиниринг. 2018. Т. 9 (2). С. 122−129 [Anikin V.A., Borisov A.M., Makunin A.V., , Mashkova E.S., Ovchinnikov M.A. // Phys. At. Nucl. 2018. V. 81 (11). P. 1547–1553].

22. Andrianova N.N., Borisov A.M., Kazakov V.A., et al. // Bull. Russ. Acad. Sci.: Phys. 2020. V. 84 (6). P. 707– 712.

23. Andrianova N.N., Borisov A.M., Virgiliev Y.S., et al. // J. Surf. Invest.: X-Ray, Synchrotr. Neutron Tech. 2008. V. 2 (3). P. 376–379.

24. Cernusca S., Fursatz M., Winter H.P., et al. // Europhys Lett. 2005. V. 70 (6). P. 768–774.

25. Борисов А.М., Виргильев Ю.С., Машкова Е.С., Немов А.С., Питиримова Е.А. // Поверхность. Рентген., синхротр. нейтр. исслед. 2006. № 1. C. 7–13.

26. Ferrari A.C., Robertson J. // Phys. Rev. B. 2000. V. 61. P. 14095.

27. Borisov A.M., Vysotina E.A., Mashkova E.S., et al. // J. Surf. Invest.: X-Ray, Synchrotr. Neutron Tech. 2022. V. 16 (2). P. 211–216.

28. Borisov A.M., Virgil’ev Y.S., Mashkova E.S. // J. Surf. Invest.: X-Ray, Synchrotr. Neutron Tech. 2008. V. 2 (1). P. 52–67.

29. Blackstone R. // J. Nucl. Mater. 1977. V. 65. P. 72.

30. Burchell T.D., Eatherly W.P. // J. Nucl. Mater. 1991. V. 179–181. P. 205.

31. Andrianova N.N., Borisov A.M., Virgil’ev Yu.S., et al. // J. Surf. Invest.: X-Ray, Synchrotr. Neutr. Tech. 2014. V. 8 (3). P. 513−518.

32. Schilling W., Ullmaier H. // Material Science and Technology. Ed. by Cahn R.W., Haasen P., and Kramer E.J. 1994. Weinheim: VCH. Ch. 9.

33. Андрианова Н.Н., Борисов А.М., Виргилиев Ю.С., Машкова Е.С. // ВАНТ. Сер.: Технич. физика автоматиз. 2013. № 67 (1). C. 119–125.


Review

For citations:


Andrianova N.N., Borisov A.M., Mashkova E.S., Ovchinnikov M.А. Modification of Carbon–Carbon Composite Materials under High-Fluence Irradiation of Fusion Plasma Ions. Nuclear Physics and Engineering. 2022;13(6):550-557. https://doi.org/10.56304/S2079562922030034

Views: 25


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)