Preview

Nuclear Physics and Engineering

Advanced search

OHMIC Losses on Magnetron-Sputtered PVD Thin-Film TCO Electrodes of the Electrochromic Modules During Their Tinting

https://doi.org/10.56304/S2079562922030332

Abstract

The processes influencing on the ohmic losses at the border between the reactively magnetronsputter deposited thin film oxide FTO electrodes and the polymer electrolyte within the cell of an electrochomic device are considered. The function of the registered full ohmic resistance of the device from the total electrical charge collected during the tinting process is established. The influence of the surface area of the device on the contribution to its total ohmic resistance from the resistance of directly the thin-film oxide electrodes is estimated. The assumption about the presence of a random number of ECD charge carriers on the surface of its electrodes at the initial moment of the coloring process, which also contributes to the initial ohmic resistance of the device, was confirmed by independent impedance spectroscopy of the electrolytic layer.

About the Authors

К. S. Novikova
Octoglass” JSC
Russian Federation

Moscow, 123112



V. V. Kravchenko
Octoglass” JSC
Russian Federation

Moscow, 123112



D. P Knyazhev
Octoglass” JSC
Russian Federation

Moscow, 123112



D. D. Bernt
Octoglass” JSC; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 123112; Moscow, 115409



А. А. Pisarev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



References

1. Somani P.R., Radhakrishnan S. // Mat. Chem. Phys. 2002. V. 77. P. 117–133.

2. Mehmood A., Long X., Haidry A.A., Zhang X. // Ceram. Int. 2020. V. 46 (15). P. 23295–23313.

3. Raugh R.D. // Electrochim. Acta. 1999. V. 44 (18). P. 3165–3176.

4. Granqvist C.G. Handbook of Inorganic Electrochromic Materials. 1995. Amsterdam: Elseiver. P. 114–136.

5. Louloudakis D. et al. // Electrochim. Acta. 2021. V. 376. P. 138049.

6. Bange K., Gambke T. // Adv. Mater. 1990. V. 2. P. 10– 16.

7. Ellmer K. // J. Appl. Phys. 2000. V. 33. P. 17–32.

8. Mortimer R.J. // Chem. Soc. Rev. 1997. V. 26. P. 147–156.

9. Gu H., Lin K., Liu X., et al. // J. Solid State Electrochem. 2018. V. 22. P. 599–611.

10. Welsh T.A., Draper E.R. // RSC Adv. 2021 . V. 11. P. 5245–5264.

11. Ah C.S. et al. // Bull. Korean Chem. Soc. 2015. V. 36. P. 548–552.

12. Xu T., Walter E., Agrawal A., et al. // Nat. Commun. 2016. V. 7. 10479.

13. Hudaya C., Park J.H., Lee J.K. // Nanoscale Res. Lett. 2012. V. 7. P. 17.

14. Liu L., Du K., et al. // Nano Energy. 2019. V. 62. P. 46– 54.

15. Evrard M., Aurelien B., Lucas S. // Surf. Coat. Technol. 2019. V. 378. P. 125070.

16. Lin J. et al. // Surf. Coat. Technol. 2010. V. 204 (14). P. 2230–2239.

17. Depla D. et al. // Thin Solid Films. 2019. V. 688. P. 202– 226.

18. Barsoukov E., Ross Macdonald J. Impedance Spectroscopy. Theory, Experiment, and Applications. 2005. New York: Wiley. P. 38–41.


Review

For citations:


Novikova К.S., Kravchenko V.V., Knyazhev D.P., Bernt D.D., Pisarev А.А. OHMIC Losses on Magnetron-Sputtered PVD Thin-Film TCO Electrodes of the Electrochromic Modules During Their Tinting. Nuclear Physics and Engineering. 2022;13(5):494-500. (In Russ.) https://doi.org/10.56304/S2079562922030332

Views: 23


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)