Application of the Radioluminography Method for the Analysis of the Distribution of Small Amounts of Tritium in Electronic-Induced Defects in Perspective Materials for Fusion Reactors
https://doi.org/10.56304/S2079562922030071
Abstract
The relevance of research of the interaction of hydrogen isotopes with the fusion reactor materials is primarily due to issues of economics and safety. The study of the influence of defects in materials on the accumulation of hydrogen has a special importance. In this work the radioluminography technique was used to analyze the distribution of tritium in electron-induced tungsten defects. The sensitivity of this technique to the magnitude of electron-induced defects from the point of view of detecting the accumulated tritium is established. The repeated analysis of tungsten samples was performed to assess the change in the distribution of tritium after long-term storage in the atmosphere, because this method allows to analyze repeatedly.
About the Authors
N. Р. BobyrRussian Federation
Moscow, 123182; Moscow, 123098
Т. А. Anfimova
Russian Federation
Moscow, 123182
В. V. Ivanov
Russian Federation
Moscow, 123182
А. S. Anikin
Russian Federation
Moscow, 123098
I. G. Lesina
Russian Federation
Moscow, 123098
А. А. Semenov
Russian Federation
Moscow, 123098
N. Е. Zabirova
Russian Federation
Moscow, 123098
А. S. Kryukova
Russian Federation
Moscow, 123098
А. N. Bukin
Russian Federation
Moscow, 123098; Moscow, 125047
А. V. Lizunov
Russian Federation
Moscow, 123098
References
1. Shimada M. et al. // J. Nucl. Mater. 2015. V. 337–339. P. 808–815.
2. You J.H. et al. // Fusion Eng. Des. B. 2016. V. 109–111. Part B. P. 1598–1603.
3. Papadakis D., Dellis S., Mergia K., Chatzikos V., Terentyev D., et al. The // Fusion Eng. Des. 2021. V. 168. P.112608.
4. Bobyr N.P. et al. // J. Nucl. Mater. 2015. V. 463. P. 1122–1124.
5. Hirai T. et al. // Nucl. Mater. Energy. 2016. V. 9. P. 616–622.
6. Alimov V.Kh., Torikai Y., et al. // Fusion Eng. Des. 2021. V. 162. P. 112100.
7. Hatano Y. et al. // J. Nucl. Mater. 2013. V. 438. P. S114–S119.
8. Rogozhkin S.V. et al. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2021. V. 486. P. 1–10.
9. Khripunov B.I. et al. // Phys. Proc. 2015. V. 71. P. 63– 67.
10. Nobuta Y. et al. // J. Nucl. Mater. 2015. V. 463. P. 993– 996.
11. Torikai Y. et al. // J. Nucl. Mater. 2013. V. 438. P. S1121–S1124.
12. Mednikov A.A., Bobyr N.P., et al. // Proc. 11th Int. School of Young Scientists and Specialists Named by A.A. Kurdjumov. 2016. P. 318–324 (in Russian).
13. Бобырь Н.П. и др. Устройство для насыщения образцов материалов изотопами водорода [Device for Saturation of Material Samples with Hydrogen Isotopes]. Патент РФ № 171739. 2017.
14. Otsuka T., Tanabe T. // Mater. Trans. 2017. V. 58 (10). P. 1364–1372.
15. Ohuchi-Yoshida H. et al. // Fusion Eng. Des. 2012. V. 87 (5–6). P. 423–426.
16. Плявинь И.К., Тале А.К. // Автометрия. 2001. № 6. С. 3−23. https://www.iae.nsk.su/images/stories/5_Autometria/5_Archives/2001/6/3-23.pdf.
17. Иванов Б.В. // Усп. хим. хим. технол. 2013. T. 7. № 6. C. 131–135.
18. Лесина И.Г., Семенов А.А. и др. // ВАНТ. Материаловедение и новые материалы. 2019. T. 4. № 100. C. 81–90.
19. Mao L. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2011. V. 269 (2). P. 105–110.
Review
For citations:
Bobyr N.Р., Anfimova Т.А., Ivanov В.V., Anikin А.S., Lesina I.G., Semenov А.А., Zabirova N.Е., Kryukova А.S., Bukin А.N., Lizunov А.V. Application of the Radioluminography Method for the Analysis of the Distribution of Small Amounts of Tritium in Electronic-Induced Defects in Perspective Materials for Fusion Reactors. Nuclear Physics and Engineering. 2022;13(5):428-438. (In Russ.) https://doi.org/10.56304/S2079562922030071