Pyroelectric Technologies, Their Applications and Prospects for the Development
https://doi.org/10.56304/S2079562920060287
Abstract
Description of modern pyroelectric technologies is presented in this article. Various schemes for generating X-ray radiation are presented. The possibility of controlling charged particle beams by means of a pyroelectric deflector is demonstrated. The prospects for the development of pyroelectric technologies and their application are discussed.
About the Authors
O. O. IvashchukRussian Federation
Pobedy str. 85, Belgorod, 308015
Leninskiy ave. 53, Moscow, 119991
A. V. Shchagin
Russian Federation
Pobedy str. 85, Belgorod, 308015
Akademicheskaya str. 1, Kharkov, 61000 Ukraine
A. S. Kubankin
Russian Federation
Pobedy str. 85, Belgorod, 308015
Leninskiy ave. 53, Moscow, 119991
I. A. Kishin
Russian Federation
Pobedy str. 85, Belgorod, 308015
Leninskiy ave. 53, Moscow, 119991
A. N. Oleinik
Russian Federation
Pobedy str. 85, Belgorod, 308015
Egham, Surrey, TW20 0EX United Kingdom
Yu. V. Grigor’ev
Russian Federation
Leninskiy ave. 59, Moscow, 119333
M. E. Gilts
Russian Federation
Pobedy str. 85, Belgorod, 308015
V. I. Alekseev
Russian Federation
Leninskiy ave. 53, Moscow, 119991
A. N. Eliseev
Russian Federation
Leninskiy ave. 53, Moscow, 119991
References
1. Brownridge J.D. // Nature (London, U.K.). 1992. V. 358. P. 287.
2. Brownridge J.D., Raboy S. // J. Appl. Phys. 1999. V. 86. P. 640.
3. Brownridge J.D., Shafroth S.M. // Appl. Phys. Lett. 2001. V. 79. P. 3364.
4. Brownridge J.D., Shafroth S.M. // Appl. Phys. Lett. V. 85. P. 1298.
5. Shafroth S.M., Kruger W., Brownridge J.D. // Nucl. Instrum. Methods Phys. Res., Sect. A. 1999. V. 422. P. 1.
6. https://www.amptek.com/internal-products/obsoleteproducts/cool-x-pyroelectric-x-ray-generator.
7. Ivashchuk O.O., Shchagin A.V., Kubankin A.S., Ionidi V.Y., Chepurnov A.S., Miroshnik V.S., Volkovb V.I., Lepeshkoe D.A. // // J. Instrum. 2020. V. 15. P. C02002.
8. Ivashchuk O.O., Shchagin A.V., Kubankin A.S., Ionidi V.Y., Chepurnov A.S. // Vopr. At. Nauki Tekh., Ser.: Yad. Issled. 2019. V. 6. P. 81.
9. Ivashchuk O.O. Proc. 14th Cherenkov’s Readings. 2021 (in Russian).
10. Geuther J.A., Danon Y. // J. Appl. Phys. 2005. V. 97. P. 104916.
11. Kubankin A.S., Oleinik A.N., Shchagin A.V. RF Patent No. RU156716U1. 2015.
12. Oleinik A.N., Kubankin A.S., Nazhmudinov R.M., Vokhmyanina K.A., Shchagina A.V., Karataevd P.V. // J. Instrum. 2016. V. 11. P. 08007.
13. Alexeyev V.I., Astapenko V.A., Eliseyev A.N., Irribarra E.F., Karpov V.A., Kishchin I.A., Krotov Yu. A., Kubankin A.S., Nazhmudinov R.M., Al-Omari M., Sakhno S.V. // J. Surf. Invest.: X-Ray, Synchrotr. Neutron Tech. 2017. V. 7. P. 13.
14. Ivashchuk O.O., Shchagin A.V., Kubankin A.S., Kishin I.A., Alekseev V.I., Oleinik A.N., Eleseev A.N. // Channeling. 2018. V. 2018. P. 212.
15. Lim J.K., Frigola P., Travish G., Rosenzweig J.B. // Phys. Rev. Accel. Beams. 2005. V. 8. P. 072401.
16. Oku T., Suzuki J., Sasao H., Yamada S., Furusaka M., Adachi T., Shinohara T., Ikeda K., Shimizu H.M. // Phys. B. (Amsterdam, Neth.). 2005. V. 356. P. 126.
17. Oku T., Kira H., Shinohara T., Takata S., Arai M., Suzuki J., Shimizu H.M. // J. Phys.: Conf. Ser. 2010. V. 251. P. 012078.
18. Oleinik A.N., Kubankin A.S., Shchagin A.V., Kaplii A.A. RF Patent No. RU175484U1. 2017.
19. Kaplii A.A., Oleinik A.N., Kubankin A.S., Shchagin A.V. RF Patent No. RU168703U1. 2016.
20. Bondar A.E. // Vestn. NGU. Ser.: Fiz. 2013. No. 8. P. 27.
21. Geuther J.A., Danon Y., Saglime F. // Phys. Rev. Lett. 2006. V. 96. P. 054803.
22. Chepurnov A.S., Ionidi V.Y., Gromov M.B., Kirsanov M.A., Klyuyev A.S., Kubankin A.S., Oleinik A.N., Shchagin A.V., Vokhmyanina K.A. // J. Phys.: Conf. Ser. 2017. V. 798. P. 012119.
Review
For citations:
Ivashchuk O.O., Shchagin A.V., Kubankin A.S., Kishin I.A., Oleinik A.N., Grigor’ev Yu.V., Gilts M.E., Alekseev V.I., Eliseev A.N. Pyroelectric Technologies, Their Applications and Prospects for the Development. Nuclear Physics and Engineering. 2021;12(6):307-314. (In Russ.) https://doi.org/10.56304/S2079562920060287