Preview

Nuclear Physics and Engineering

Advanced search

Microwave Preionization System of the MEPHIST-0 Tokamak

https://doi.org/10.56304/S2079562922030022

Abstract

Microwave preionization is a common technique used for electron-cyclotron resonance assisted plasma start-up in spherical tokamaks. The aim of the study is to test features of the developed MEPhIST tokamak preionization system. The study explores the preliminary preionization plasma. The gas discharge parameters were measured using Rogowski coils, optical spectroscopy, and Langmuir probes. Additionally, CCD – camera captured the emission evolution during discharge. The results obtained demonstrate that the plasma discharge was localized in the discharge vessel. The calculated plasma density and electron temperature were 5.5 × 1016 m–3 and 8 eV, respectively. The study enables a better understanding of the preionization process in the MEPhIST-0.

About the Authors

A. I. Alieva
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



A. S. Prishvitsyn
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



N. E. Efimov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



S. A. Krat
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



A. S. Isakova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



A. V. Kaziev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



G. M. Vorobyov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



V. A. Kurnaev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



References

1. Regan S.P., et al. // Nucl. Fusion. 2005. V. 45 (10). P. S245.

2. Gryaznevich M., Shevchenko V., Sykes A. // Nucl. Fusion. 2006. V. 46 (8). P. S573.

3. Bae Y.S., et al. // Nucl. Fusion. 2008. V. 49 (2). P. 022001.

4. Kobayashi T., et al. // EPJ Web Conf. 2015. V. 87. P. 04008.

5. Lohr J., et al. // Fusion Sci. Technol. 2005. V. 48 (2). P. 1226.

6. Choe W., et al. // Rev. Sci. Instrum. 2000. V. 71 (7). P. 2728.

7. Khan R., et al. // Fusion Eng. Des. 2018. V. 126. P. 10.

8. Yexi H., et al. // Plasma Sci. Technol. 2006. V. 8 (1). P. 84.

9. Jo J.G., et al. // Phys. Plasmas. 2017. V. 24 (1). P. 012103.

10. Chektybayev B. // Fusion Eng. Des. 2021. V. 163. P. 112167.

11. Kurnaev V.A., et al. // Phys. At. Nucl. 2019. V. 82. P. 1329.

12. Yu Y., et al. // AIP Adv. 2018. V. 8 (9). P. 095015.


Review

For citations:


Alieva A.I., Prishvitsyn A.S., Efimov N.E., Krat S.A., Isakova A.S., Kaziev A.V., Vorobyov G.M., Kurnaev V.A. Microwave Preionization System of the MEPHIST-0 Tokamak. Nuclear Physics and Engineering. 2023;14(1):87-93. (In Russ.) https://doi.org/10.56304/S2079562922030022

Views: 42


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)