Preview

Nuclear Physics and Engineering

Advanced search

Closed Orbit Correction Algorithms of the NICA Booster

https://doi.org/10.56304/S2079562922030459

Abstract

The NICA accelerator complex will consist of two injector chains, a new 578 MeV/u superconducting booster synchrotron (Booster), the existing superconducting synchrotron Nuclotron, and the new superconducting collider that has two storage rings each of about 503 m in circumference. At present, the technological commissioning run of the Booster is being completed. The next step is planned commissioning run with the beam. One of the first procedures after beam injection is the closed orbit correction and providing stable circulation. The closed orbit distortion is should not be out of the tolerance range during the accelerating cycle.The article describes the closed orbit correction algorithms in superconducting synchrotrons, which can be implemented in the Booster and the expected results for Run with a beam.

About the Authors

М. М. Shandov
Joint Institute for Nuclear Research
Russian Federation

Dubna, Moscow oblast, 141980 



S. А. Kostromin
Joint Institute for Nuclear Research; Saint-Petersburg State University
Russian Federation

Dubna, Moscow oblast, 141980; St. Petersburg, 199034



References

1. Syresin E.M., et al. // Proc. 26th Russian Particle Accelerator Conf. (RUPAC'18). 2018. P. 12−16. https://doi.org/10.18429/JACoW-RUPAC2018-MOX-MH03

2. Tuzikov A.V., et al. // Proc. 25th Russian Particle Accelerator Conf. (RuPAC'16). 2017. P. 160−162. https://doi.org/10.18429/JACoW-RuPAC2016-FR-CAMH05

3. Kazinova O., et al. // Phys. Part. Nucl. Lett. 2018. V. 15 (7). P. 854−857. https://doi.org/10.1134/S1547477118070051

4. Бутенко A.В., Казинова О., Костромин С.А. и др. Допуски на погрешности магнитного поля бустера нуклотрона. Сообщение ОИЯИ № P9-2017-18. 2017. Дубна: ОИЯИ. https://inis.iaea.org/collection/NCLCollectionStore/_Public/48/088/48088308.pdf

5. Shandov M.M., et al. // Phys. Part. Nucl. Lett. 2020. V. 17 (4). P. 535−538. https://doi.org/10.1134/S154747712004041X

6. Kostromin S.A., et al. // Phys. Part. Nucl. Lett. 2016. V. 13 (7). P. 855−861. https://doi.org/10.1134/S1547477116070323

7. Donyagin A.M., et al. // Appl. Phys. 2017. V. 4. P. 16−21.

8. Borisov V.V., et al. // IEEE Trans. Appl. Supercond. 2018. V. 28 (3). P. 1−5.

9. Shemchuk A.V. et al. // Phys. Part. Nucl. Lett. 2018. V. 15 (7). P. 873−877.

10. Methodical Accelerator Design (MAD-X). 2020. https://mad.web.cern.ch/mad/.

11. Kolomensky A. A., Lebedev A.N. Theory of Cyclic Accelerators. 1966. Amsterdam: North-Holland.

12. Ziemann V. Hands-On Accelerator Physics Using MATLAB. 2019. Boca Raton: CRC Press. https://doi.org/10.1201/9780429491290

13. Dinev D. // Phys. Part. Nucl. 1997. V. 28 (4). P. 398−417. https://doi.org/10.1134/1.953046

14. Kotelnikov V.A. Reprint in Modern Sampling Theory: Mathematics and Applications. 2000. Boston: Birkhäuser.


Review

For citations:


Shandov М.М., Kostromin S.А. Closed Orbit Correction Algorithms of the NICA Booster. Nuclear Physics and Engineering. 2023;14(1):67-75. (In Russ.) https://doi.org/10.56304/S2079562922030459

Views: 29


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)