Preview

Nuclear Physics and Engineering

Advanced search

On the Width of γ-Line and the Photon Structure

https://doi.org/10.56304/S207956292203023X

Abstract

The well-known narrowing of the Mössbaur γ-line with increasing age of the excited energy state ℏω0 of the emitter nucleus (the half-life is T1/2) and broadening of the γ-line with decreasing irradiation time of the absorber nucleus are analyzed. Taking into account the short time of emission of quantum transition energy - much less than T1/2, which can be seen, for example, from the duration of the γ-signal on the scintillator, the analysis leads to the idea of the structure of the γ-quantum (photon) as an electromagnetic wave of frequency ω0 that does not carry energy (0-wave), which is emitted by the nucleus from the moment of formation of the excited state to the quantum transition, with the energy quantum ℏω0 in the form of a short-term feature on the “tail” of this 0-wave. A possible source of 0-waves can be virtual transitions of the nucleus from the excited state to the ground state and back before the emission of an energy quantum. Detection of 0-waves is possible due to changing the width of the g-line with additional irradiation of the absorber nuclei by resonant 0-waves. The possibility of predicting the future decay of an excited state by 0-waves detecting and the prospects of using 0-waves for information transmission are noted. The principle of a 0-wave generator without energy radiation is proposed.

About the Author

V. V. Koltsov
JSC “Khlopin Radium Institute”
Russian Federation

Sankt-Petersburg, 194021 



References

1. Berestetskii V.B., Lifshitz E.M., Pitaevskii L.P. Quantum Electrodynamics. 2012. Oxford: Butterworth-Heinemann.

2. Weisskopf V., Wigner E. // Z. Phys. 1930. V. 63. P. 54.

3. Wu G.S., Lee Y.K., Benczer-Koller N., et al. // Phys. Rev. Lett. 1960. V. 5 (9). P. 432.

4. Davydov A.S. Quantum Mechanics: International Series in Natural Philosophy. 1965. New York: Pergamon.

5. Griem H.R. Plasma spectroscopy. 1963. New York: Macgraw-Hill.

6. Koltsov V.V. // Bull. Russ. Acad. Sci.: Phys. 2019. V. 83. P. 1144.

7. Holland R.E., Linch F.J., Perlow C.J., et al. // Phys. Rev. Lett. 1960. V. 4 (4). P. 181.

8. Linch F.J., Holland R.E., Hamermesh M. // Phys. Rev. 1960. V. 120 (2). P. 513.

9. Wertheim G.K. Messbauer Effect. Principles and Applications. 1964. New York: Academic.

10. www.nndc.bnl.gov. Brookhaven National Laboratory, National Nuclear Data Center. Databases “Structure and Decay” and “NuDat 3.0”.

11. Triftshauser W., Craig P.P. // Phys. Rev. Lett. 1966. V. 16 (25). P. 1161.

12. Вайскопф В.Ф. // Успехи физических наук. 1982. Т. 138 (11). С. 455.

13. Voitovetsky V.K., Korsunsky I.L., Pazhin Yu.F., et al. // Yad. Fiz. 1983. V. 38. P. 662.

14. Mandel L., Wolf E. Optical Coherence and Quantum Optics. 1995. New York: Cambridge Univ. Press.

15. Davydov A.V. Advances in Gamma Ray Resonant Scattering and Absorption. 2016. Cham: Springer Int. Publ.

16. De Broglie L. Non-Linear Wave Mechanics (A Casual Interpretation). 1960. New York: Elsevier Publ. Co.

17. Vaidman L. // Found. Phys. 2005. V. 35. P. 299.


Review

For citations:


Koltsov V.V. On the Width of γ-Line and the Photon Structure. Nuclear Physics and Engineering. 2023;14(1):61-66. (In Russ.) https://doi.org/10.56304/S207956292203023X

Views: 24


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)