Preview

Nuclear Physics and Engineering

Advanced search

Spatial Calibration of Scintillator Light Output for Proton Radiography

https://doi.org/10.56304/S2079562922030460

Abstract

A technique for determining spatial heterogeneity of scintillator used for proton radiography developed. It based on registration of a proton beam images formed during passage of a beam through scintillator and approximation of beam cross-profile with two-dimensional Gaussian-like function. Results of spatial calibration for the lutetium silicate scintillator and the digital camera used on the proton microscope with the use of magnetic optics PUMA are presented. It is shown that taking into account spatial heterogeneity of the scintillator and the camera allows describing a beam profile in each pixel of a beam image with an accuracy of 0.7%. Results on fluctuation of a beam position, dimensions and shape at the scintillator plane presented. The proposed technique eliminates defects of a proton radiography images caused by the optical system and electro-optical shutter if registered signal depends linearly on beam intensity. It also eliminates or strongly suppresses defects resulted from efficiency variation of a charge-coupled camera.

About the Authors

N. S. Shilkin
Institute of Problems of Chemical Physics of the Russian Academy of Sciences
Russian Federation

Chernogolovka, Moscow oblast, 142432



V. B. Mintsev
Institute of Problems of Chemical Physics of the Russian Academy of Sciences
Russian Federation

Chernogolovka, Moscow oblast, 142432



D. S. Yuriev
Institute of Problems of Chemical Physics of the Russian Academy of Sciences
Russian Federation

Chernogolovka, Moscow oblast, 142432



A. V. Kantsyrev
National Research Centre “Kurchatov Institute”
Russian Federation

Moscow, 128132



D. S. Kolesnikov
National Research Centre “Kurchatov Institute”
Russian Federation

Moscow, 128132



A. V. Bogdanov
National Research Centre “Kurchatov Institute”
Russian Federation

Moscow, 128132



V. A. Panyushkin
National Research Centre “Kurchatov Institute”
Russian Federation

Moscow, 128132



A. V. Scobliakov
National Research Centre “Kurchatov Institute”
Russian Federation

Moscow, 128132



R. O. Gavrilin
National Research Centre “Kurchatov Institute”
Russian Federation

Moscow, 128132



A. A. Golubev
National Research Centre “Kurchatov Institute”; JSC “Science and Innovations” SAEC “Rosatom”
Russian Federation

Moscow, 128132; Moscow, 115035



References

1. King N.S.P. et al. // Nucl. Instrum. Methods Phys. Res. Sect. A. 1999. V. 424 (1). P. 84. https://doi.org/10.1016/S0168-9002(98)01241-8

2. Mottershead C.T., Zumbro J.D. // Proc. Particle Accelerator Conf. 1997. V. 2. P. 1397. https://doi.org/10.1109/PAC.1997.750705

3. Rigg P.A., et al. // Phys. Rev. B. 2008. V. 77. P. 220101. https://doi.org/10.1063/1.2832916

4. Abel N.H. // J. Reine Angew. Math. 1826. V. 1. P. 153. https://doi.org/10.1515/crll.1826.1.153

5. Freeman M.S. et al. // Rev. Sci. Instrum. 2017. V. 88. P. 013709. https://doi.org/10.1063/1.4973767

6. Kantsyrev A.V. et al. // J. Phys.: Conf. Ser. 2018. V. 946. P. 012019. https://doi.org/10.1088/1742-6596/946/1/012019

7. Agostinelli S. et al. // Nucl. Instrum. Methods Phys. Res. Sect. A. 2003. V. 506. P. 250. https://doi.org/10.1016/S0168-9002(03)01368-8

8. Morris C.L. et al. // J. Appl. Phys. 2011. V. 109. P. 104905. https://doi.org/10.1063/1.3580262

9. Golubev A.A. // At. Energy. 2008. V. 104. P. 134. https://doi.org/10.1007/s10512-008-9004-2

10. Antipov Yu.M. et al. // Instrum. Exp. Tech. 2010. V. 53. P. 319. https://doi.org/10.1134/S0020441210030012

11. Varentsov D.V. et al. // Rev. Sci. Instrum. 2016. V. 87. P. 023303. https://doi.org/10.1063/1.4941685

12. Burtsev V.V. et al. // Combust. Explos. Shock Waves. 2011. V. 47. P. 627. https://doi.org/10.1134/S0010508211060025

13. Schultz L.J. et al. // Nucl. Instrum. Methods Phys. Res. Sect. A. 2003. V. 508. P. 220. https://doi.org/10.1016/S0168-9002(03)01658-9

14. Morris C.L. // LANL Report LA-UR-00-5716. 2000. Los Alamos: LosAlamos Natl. Lab. https://perma-link.lanl.gov/object/tr?what=info:lanl-repo/lare-port/LA-UR-00-5716.

15. Kantsyrev A.V. et al. // Instrum. Exp. Tech. 2014. V. 57. P. 1. https://doi.org/10.1134/S0020441214010151

16. Kolesnikov S.A. et al. // AIP Conf. Proc. 2012. V. 1426 (1). P. 390. https://doi.org/10.1063/1.3686300

17. Mintsev V.B. et al. // Contrib. Plasma Phys. 2018.V. 58. P. 93. https://doi.org/10.1002/ctpp.201700141

18. Kantsyrev A.V. et al. // Proc. 19th IEEE Pulsed Power Conf. 2013. P. 1077. https://doi.org/10.1109/PLASMA.2013.6633424

19. Melcher C.L., Schweitzer J.S. // IEEE Trans. Nucl. Sci. 1992. V. 39. P. 502. https://doi.org/10.1109/23.159655

20. Morris C.L. et al. // Exp. Mech. 2015. V. 56. P. 111. https://doi.org/10.1007/s11340-015-0077-2

21. Rogers J.G., Batty C.L.// IEEE Trans. Nucl. Sci. 2000. V. 56. P. 438. https://doi.org/10.1109/23.846277

22. Schneider C., Rasband W.S., Eliceiri K.W. // Nat. Methods. 2012. V. 9. P. 671. https://doi.org/10.1038/nmeth.2089


Review

For citations:


Shilkin N.S., Mintsev V.B., Yuriev D.S., Kantsyrev A.V., Kolesnikov D.S., Bogdanov A.V., Panyushkin V.A., Scobliakov A.V., Gavrilin R.O., Golubev A.A. Spatial Calibration of Scintillator Light Output for Proton Radiography. Nuclear Physics and Engineering. 2023;14(1):46-55. (In Russ.) https://doi.org/10.56304/S2079562922030460

Views: 26


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)