Preview

Nuclear Physics and Engineering

Advanced search

The Nature of Anomalous Particles (Granules) in the Rapidly Quenched PREP Powders – IV. A Multiscale Study of The Structure Evolution of the PM HIP Stainless Steels under Heat Treatment and Hot Deformation

https://doi.org/10.56304/S2079562922030484

Abstract

The occurence of anomalous particles (granules) with significantly different content of interstitial microalloying elements carbon and boron is an important features of the homogeneity of the composition of rapidly quenched powders of stainless steels and Ni-based superalloys produced by the PREP method. A multi-scale experimental investigation of the evolution of the structure of the PM HIP stainless steels under heat treatment and hot deformation was performed. Direct nuclear methods of activation autoradiography on carbon, track autoradiography on boron, metallography, SEM, EDX, and OIM were used to reveal the evolution of the microstructure of the PM HIP stainless steels. A significant effect of heat treatment and hot deformation on the behavior of carbon and boron in PM HIP stainless steels has been revealed. A significant effect of the microstructure evolution and the behavior of carbon and boron on the mechanical properties of PM HIP stainless steels in comparison with their traditional counterparts has been discovered and discussed.

About the Author

A. V. Shulga
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



References

1. Ильин А.А., Строганов Г.Б., Фаткуллин О.Х., Шульга А.В., Мартинов В.Н. Структура и свойства быстрозакаленных сплавов. 2008. Москва: Альтекс.

2. Zinkle S.J., Was G.S. // Acta Mater. 2013. V. 61 (3). P. 735−758. https://doi.org/10.1016/j.actamat.2012.11.004

3. Shulga A.V. // J. Nucl. Mater. 2013. V. 434 (1−3). P. 133−140. https://doi.org/10.1016/j.jnucmat.2012.11.008

4. Shulga A.V. // Proc. World Congress and Exibition. 9−13 Oct. 2016. Hamburg, Germany. P. 1−6.

5. Shulga A.V. // J. Nucl. Mater. 2008. V. 373 (1−3). P. 44−52. https://doi.org/10.1016/j.jnucmat.2007.04.050

6. Yano Y. et al. // J. Nucl. Mater. 2017. V. 487. P. 229−237. https://doi.org/10.1016/j.jnucmat.2017.02.021

7. Irukuvarghula S. et al. // Acta Mater. 2019. V. 172. P. 6−17. https://doi.org/10.1016/j.actamat.2018.10.018

8. Irukuvarghula S. et al. // Acta Mater. 2017. V. 133. P. 269−281. https://doi.org/10.1016/j.actamat.2017.04.068

9. Shulga A.V. // Yad. Fiz. Inzhin. 2020. V. 11 (1). P. 32−42. https://doi.org/10.1134/S2079562919050221 [Shulga A.V. // Phys. At. Nucl. 2020. V. 83 (9). P. 1339-1348. https://doi.org/10.1134/S1063778820090264].

10. Doñate-Buendia C. et al. // Acta Mater. 2021. V. 206. P. 116566. https://doi.org/10.1016/j.actamat.2020.116566

11. Shulga A.V. // Eng. Failure Anal. 2015. V. 56. P. 512−519. https://doi.org/10.1016/j.engfailanal.2014.11.019

12. Schneibel J.H., et al. // Acta Mater. 2011. V. 59. P. 1300−1308. https://doi.org/10.1016/j.actamat.2010.10.062

13. Pimentel G., et al. // Rev. Metal. 2012. V. 48 (4). P. 303−316. https://doi.org/10.3989/revmetalm.1165

14. Shulga A.V. // Yad. Fiz. Inzhin. 2018. V. 9 (4). P. 346−356. https://doi.org/10.1134/S2079562918040164 [ShulgaA.V. // Phys. At. Nucl. 2019. V. 82 (9). P. 1263−1272. https://doi.org/10.1134/S1063778819090084].

15. Shulga A.V. // // Yad. Fiz. Inzhin. 2022. V. 13 (3). P.222−239. https://doi.org/10.56304/S2079562922010390 [Shulga A.V. // Phys. At. Nucl. 2021. V. 84 (11). P. 1801−1816. https://doi.org/10.1134/S1063778821090325].

16. Da Rosa G., et al. // Acta Mater. 2019. V. 182. P. 226−234. https://doi.org/10.1016/j.actamat.2019.10.029

17. Wang X.G., Wang L., Huang M.X. // Acta Mater. 2017. V. 124. P. 17−29. https://doi.org/10.1016/j.actamat.2016.10.069

18. Schwa R., Ruff V. // Acta Mater. 2013. V. 61. P. 1798−1808.

19. Mola J., et al. // Acta Mater. 2021. V. 212. P. 116888. https://doi.org/10.1016/j.actamat.2021.116888

20. Li T. et al. // Acta Mater. 2021. V. 221. P. 117433. https://doi.org/10.1016/j.actamat.2021.117433

21. Takahashi J., et al. // Acta Mater. 2017. V. 133. P. 41−54. https://doi.org/10.1016/j.actamat.2017.05.02

22. Cautaerts N., et al. // Acta Mater. 2019. V. 164. P. 90−98. https://doi.org/10.1016/j.actamat.2018.10.018

23. Caillard D. // Acta Mater. 2016. V. 112. P. 273−284. https://doi.org/10.1016/j.actamat.2016.04.018


Review

For citations:


Shulga A.V. The Nature of Anomalous Particles (Granules) in the Rapidly Quenched PREP Powders – IV. A Multiscale Study of The Structure Evolution of the PM HIP Stainless Steels under Heat Treatment and Hot Deformation. Nuclear Physics and Engineering. 2023;14(1):27-45. (In Russ.) https://doi.org/10.56304/S2079562922030484

Views: 21


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)