The Nature of Anomalous Particles (Granules) in the Rapidly Quenched PREP Powders – IV. A Multiscale Study of The Structure Evolution of the PM HIP Stainless Steels under Heat Treatment and Hot Deformation
https://doi.org/10.56304/S2079562922030484
Abstract
The occurence of anomalous particles (granules) with significantly different content of interstitial microalloying elements carbon and boron is an important features of the homogeneity of the composition of rapidly quenched powders of stainless steels and Ni-based superalloys produced by the PREP method. A multi-scale experimental investigation of the evolution of the structure of the PM HIP stainless steels under heat treatment and hot deformation was performed. Direct nuclear methods of activation autoradiography on carbon, track autoradiography on boron, metallography, SEM, EDX, and OIM were used to reveal the evolution of the microstructure of the PM HIP stainless steels. A significant effect of heat treatment and hot deformation on the behavior of carbon and boron in PM HIP stainless steels has been revealed. A significant effect of the microstructure evolution and the behavior of carbon and boron on the mechanical properties of PM HIP stainless steels in comparison with their traditional counterparts has been discovered and discussed.
About the Author
A. V. ShulgaRussian Federation
Moscow, 115409
References
1. Ильин А.А., Строганов Г.Б., Фаткуллин О.Х., Шульга А.В., Мартинов В.Н. Структура и свойства быстрозакаленных сплавов. 2008. Москва: Альтекс.
2. Zinkle S.J., Was G.S. // Acta Mater. 2013. V. 61 (3). P. 735−758. https://doi.org/10.1016/j.actamat.2012.11.004
3. Shulga A.V. // J. Nucl. Mater. 2013. V. 434 (1−3). P. 133−140. https://doi.org/10.1016/j.jnucmat.2012.11.008
4. Shulga A.V. // Proc. World Congress and Exibition. 9−13 Oct. 2016. Hamburg, Germany. P. 1−6.
5. Shulga A.V. // J. Nucl. Mater. 2008. V. 373 (1−3). P. 44−52. https://doi.org/10.1016/j.jnucmat.2007.04.050
6. Yano Y. et al. // J. Nucl. Mater. 2017. V. 487. P. 229−237. https://doi.org/10.1016/j.jnucmat.2017.02.021
7. Irukuvarghula S. et al. // Acta Mater. 2019. V. 172. P. 6−17. https://doi.org/10.1016/j.actamat.2018.10.018
8. Irukuvarghula S. et al. // Acta Mater. 2017. V. 133. P. 269−281. https://doi.org/10.1016/j.actamat.2017.04.068
9. Shulga A.V. // Yad. Fiz. Inzhin. 2020. V. 11 (1). P. 32−42. https://doi.org/10.1134/S2079562919050221 [Shulga A.V. // Phys. At. Nucl. 2020. V. 83 (9). P. 1339-1348. https://doi.org/10.1134/S1063778820090264].
10. Doñate-Buendia C. et al. // Acta Mater. 2021. V. 206. P. 116566. https://doi.org/10.1016/j.actamat.2020.116566
11. Shulga A.V. // Eng. Failure Anal. 2015. V. 56. P. 512−519. https://doi.org/10.1016/j.engfailanal.2014.11.019
12. Schneibel J.H., et al. // Acta Mater. 2011. V. 59. P. 1300−1308. https://doi.org/10.1016/j.actamat.2010.10.062
13. Pimentel G., et al. // Rev. Metal. 2012. V. 48 (4). P. 303−316. https://doi.org/10.3989/revmetalm.1165
14. Shulga A.V. // Yad. Fiz. Inzhin. 2018. V. 9 (4). P. 346−356. https://doi.org/10.1134/S2079562918040164 [ShulgaA.V. // Phys. At. Nucl. 2019. V. 82 (9). P. 1263−1272. https://doi.org/10.1134/S1063778819090084].
15. Shulga A.V. // // Yad. Fiz. Inzhin. 2022. V. 13 (3). P.222−239. https://doi.org/10.56304/S2079562922010390 [Shulga A.V. // Phys. At. Nucl. 2021. V. 84 (11). P. 1801−1816. https://doi.org/10.1134/S1063778821090325].
16. Da Rosa G., et al. // Acta Mater. 2019. V. 182. P. 226−234. https://doi.org/10.1016/j.actamat.2019.10.029
17. Wang X.G., Wang L., Huang M.X. // Acta Mater. 2017. V. 124. P. 17−29. https://doi.org/10.1016/j.actamat.2016.10.069
18. Schwa R., Ruff V. // Acta Mater. 2013. V. 61. P. 1798−1808.
19. Mola J., et al. // Acta Mater. 2021. V. 212. P. 116888. https://doi.org/10.1016/j.actamat.2021.116888
20. Li T. et al. // Acta Mater. 2021. V. 221. P. 117433. https://doi.org/10.1016/j.actamat.2021.117433
21. Takahashi J., et al. // Acta Mater. 2017. V. 133. P. 41−54. https://doi.org/10.1016/j.actamat.2017.05.02
22. Cautaerts N., et al. // Acta Mater. 2019. V. 164. P. 90−98. https://doi.org/10.1016/j.actamat.2018.10.018
23. Caillard D. // Acta Mater. 2016. V. 112. P. 273−284. https://doi.org/10.1016/j.actamat.2016.04.018
Review
For citations:
Shulga A.V. The Nature of Anomalous Particles (Granules) in the Rapidly Quenched PREP Powders – IV. A Multiscale Study of The Structure Evolution of the PM HIP Stainless Steels under Heat Treatment and Hot Deformation. Nuclear Physics and Engineering. 2023;14(1):27-45. (In Russ.) https://doi.org/10.56304/S2079562922030484