Preview

Nuclear Physics and Engineering

Advanced search

Simulation of Direct Drive Target Compression and Ignition Taking into Account Hot Electrons Generation

https://doi.org/10.56304/S2079562922030150

Abstract

Low adiabat dynamics is necessary for efficient compression and achievement of ignition conditions in a laser fusion targets. In this case, any additional sources of target interior heating are undesirable. Parametric laser-plasma instabilities can lead to the generation of a noticeable amount of hot electrons with energies of tens to hundreds of keV, that could penetrate into the target before the front shock arrives. The paper presents a hydrodynamics consistent model for generation and propagation of such electrons. It is shown that up to ~2% of the laser pulse energy can go into hot electrons with a temperature of about 100 keV, which appear as a result of the development of the two-plasmon decay instability. In this case, despite the relatively small part of absorbed by the target electrons (the value depends on the angular distribution of hot electrons and varies in the range of 3–15%), a noticeable decrease in the neutron yield occur. In a situation where the conditions in the target are close to the ignition threshold, the effects associated with the generation of hot electrons can violate the ignition conditions.

About the Authors

S. I. Glazyrin
Dukhov Research Institute of Automatics (VNIIA); Lebedev Physics Institute, Russian Academy of Sciences
Russian Federation

Moscow, 127055; Moscow, 119991



A. V. Brantov
Dukhov Research Institute of Automatics (VNIIA); Lebedev Physics Institute, Russian Academy of Sciences
Russian Federation

Moscow, 127055; Moscow, 119991



M. A. Rakitina
Lebedev Physics Institute, Russian Academy of Sciences
Russian Federation

Moscow, 119991



K. E. Gorodnichev
Dukhov Research Institute of Automatics (VNIIA)
Russian Federation

Moscow, 127055 



V. Yu. Bychenkov
Dukhov Research Institute of Automatics (VNIIA); Lebedev Physics Institute, Russian Academy of Sciences
Russian Federation

Moscow, 127055; Moscow, 119991



References

1. Basov N.G., Krokhin O.N. // Sov. Phys. JETP. 1964. V. 19 (1). P. 123.

2. Lindl J.D. et al. // Phys. Plasmas. 2004. V. 11 (2). P. 339.

3. Lindl J.D. et al. // Phys. Plasmas. 2014. V. 21 (2). P. 020501.

4. Kruer W.L. The Physics of Laser Plasma Interactions. 1988. Massachusetts: Addison-Wesley Publishing Co.

5. Montgomery D.S. // Phys. Plasmas. 2016. V. 23 (5). P. 055601.

6. Delettrez J.A., Collins T.J.B., Ye C. // Phys. Plasmas. 2019. V. 26 (6). P. 062705.

7. Wen H. et al. // Phys. Rev. E. 2019. V. 100 (4). P. 041201.

8. Sary G., Gremillet L., Canaud B. // Phys. Plasmas. 2019. V. 26 (7). P. 072118.

9. Sary G., Gremillet L. // Phys. Plasmas. 2022. V. 29 (7). P. 072103.

10. Craxton R.S. et al. // Phys. Plasmas. 2015. V. 22 (11). P. 110501.

11. Colaïtis A. et al. // Phys. Rev. E. 2015. V. 92 (4). P. 041101.

12. Hohenberger M. et al. // Phys. Plasmas. 2015. V. 22 (5). P. 056308.

13. Radha P.B. et al. // Phys. Plasmas. 2016. V. 23 (5). P. 056305.

14. Regan S.P. et al. // Nucl. Fusion. 2019. V. 59 (3). P. 032007.

15. Solodov A.A. et al. // Phys. Plasmas. 2020. V. 27 (5). P. 052706.

16. Follett R.K. et al. // Phys. Plasmas. 2019. V. 26 (6). P. 062111.

17. Follett R.K. et al. // Phys. Plasmas. 2021. V. 28 (3). P. 032103.

18. Follett R.K. et al. // Phys. Rev. Lett. 2016. V. 116 (15). P. 155002.

19. Fein J.R. et al. // Phys. Plasmas. 2017. V. 24 (3). P. 032707.

20. Гаранин С.Г. // Успехи физических наук. 2011. Т. 181 (4). С. 434.

21. Bel’kov S.A. et al. // J. Exp. Theor. Phys. 2015. V. 121 (4). P. 686..

22. Brantov A.V., Bychenkov V.Yu. // Plasma Phys. Rep. 2013. V. 39 (9). P. 698.

23. Falk K. et al. // Phys. Rev. Lett. 2018. V. 120 (2). P. 025002.

24. Glazyrin S.I. et al. // JETP Lett. 2022. V. 116 (2). P. 83.

25. Gus’kov S.Y. et al. // Plasma Phys. Control. 2019. V. 61 (10). P. 105014.

26. Glazyrin S.I. et al. // High Energy Density Phys. 2020. V. 36. P. 100824.

27. Huba J.D. NRL Plasma Formulary. 2013. Washington: Naval Res. Lab.

28. Rosenberg M.J. et al. // Phys. Rev. Lett. 2018. V. 120 (5). P. 055001.

29. Michel D.T. et al. // Phys. Rev. Lett. 2012. V. 109 (15). P. 155007.

30. Gus’kov S.Y. et al. // Plasma Phys. Control. 2019. V. 61 (5). P. 055003.


Review

For citations:


Glazyrin S.I., Brantov A.V., Rakitina M.A., Gorodnichev K.E., Bychenkov V.Yu. Simulation of Direct Drive Target Compression and Ignition Taking into Account Hot Electrons Generation. Nuclear Physics and Engineering. 2023;14(1):5-11. (In Russ.) https://doi.org/10.56304/S2079562922030150

Views: 33


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)