Optical Properties of Tantalum Oxide Nanocluster Films in the Infrared Range
https://doi.org/10.56304/S2079562922050098
Abstract
The results of formation, certification of surface morphology and investigation of optical properties in the near and middle IR range of Ta2O5 nanocluster films obtained by thermal oxidation in the atmosphere of monodisperse cluster films of metallic tantalum created on Si(001) silicon substrates by magnetron sputtering are presented. Surface images were obtained by atomic force microscopy (in situ) and it was shown that Ta films have a porous densely packed structure consisting of individual spherical nanoparticles. The optical properties of the obtained films were studied using a spectrometer for the near and medium IR radiation range. It is shown that thin films (with a thickness of less than 100 nm) have a sharp boundary between the radiation transmission region and the absorption and/or reflection region, whereas for thicker films this effect gradually disappears with an increase in the thickness of the cluster film and does not depend on the size of the nanoclusters. The possibility of using the obtained structures as part of thermal photoelectric generators in order to increase their efficiency is discussed.
About the Authors
D. V. BortkoRussian Federation
Moscow, 115409
P. V. Borisyuk
Russian Federation
Moscow, 115409
V. A. Shilov
Russian Federation
Moscow, 115409
O. S. Vasilyev
Russian Federation
Moscow, 115409
Yu. Yu. Lebedinskii
Russian Federation
Moscow, 115409;
Moscow Region, 141701
K. M. Balakhnev
Russian Federation
Moscow, 115409
References
1. Daneshvar H. et al. // Appl. Energy. 2015. V. 159. P. 560.
2. Wang Z. et al. // Sol. Energy Mater. Sol. Cells. 2022. V. 238. P. 111554.
3. Wang H.J. et al. // Sci. China Tech. Sci. 2014. V. 57 (2). P. 332.
4. Nam Y. et al. // Sol. Energy Mater. Sol. Cells. 2014. V. 122. P. 287.
5. Zhou Z. et al. // J. Quant. Spectrosc. Radiat. Transf. 2022. V. 278. P. 108016.
6. Sakakibara R. et al. // Sol. Energy Mater. Sol. Cells. 2022. V. 238. P. 111536.
7. Kondaiah P. et al. // Sol. Energy Mater. Sol. Cells. 2019. V. 198. P. 26.
8. Rana A.S. et al. // Nano Energy. 2021. V. 80. P. 105520.
9. Crowley C.J. et al. // Proc. AIP Conf. 2005. P. 601.
10. Lee J. et al. // Int. J. Heat Mass Transf. 2017. V. 108. P. 1115.
11. Burger T. et al. // Joule. 2020. V. 4. P. 1660.
12. Chen Y.B., Zhang Z.M. // Opt. Commun. 2007. V. 269. P. 411.
13. Silva-Oelker G. et al. // J. Quant. Spectrosc. Radiat. Transf. 2019. V. 231. P. 61.
14. Ollier E. et al. // Sol. Energy Mater. Sol. Cells. 2017. V. 170. P. 205.
15. Borisyuk P.V. et al. // Mater. Lett. 2021. V. 286. P. 129204.
16. Vasilyev O.S. et al. // Phys. At. Nucl. 2020. V. 83 (10). P. 1484
17. Shvets P., Maksimova K., Goikhman A. // Coatings. 2022. V. 12 (3). P. 291.
18. Tan G.-L. et al. // J. Am. Ceram. Soc. 2003. V. 86 (11). P. 1885.
19. Abbasiyan A. et al. // Opt. Quantum Electron. 2019. V. 51. P. 338.
20. Briggs D., Grant J. Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy. 2003. Chichester: IM Publications.
Review
For citations:
Bortko D.V., Borisyuk P.V., Shilov V.A., Vasilyev O.S., Lebedinskii Yu.Yu., Balakhnev K.M. Optical Properties of Tantalum Oxide Nanocluster Films in the Infrared Range. Nuclear Physics and Engineering. 2023;14(2):194-201. (In Russ.) https://doi.org/10.56304/S2079562922050098