Segmentation of Images of Skin Neoplasms Using the Active Contour Method
https://doi.org/10.56304/S2079562922030563
Abstract
Computer vision technologies are being actively introduced into modern life, including medical practice. The development of such technologies has led to the emergence of computer systems that allow the detection and classification of skin diseases with a quality comparable and in some cases exceeding human capabilities. The article reveals the method of automatic segmentation, based on dermatoscopic images provided by doctors, obtained using a digital optical device – a dermatoscope. The main goal of the developed model is to identify the neoplasm zone and hyperpigmentation areas in the images of skin neoplasms for further integration into medical decision support systems for the diagnosis of melanoma. As a result of the work carried out, a software package was created that allows segmentation of the neoplasm. As a demonstration of the method, experimental studies of the detection of melanoma boundaries and zones of feature areas in images of skin neoplasms are presented. The developed system can be used for diagnostic research and educational purposes.
About the Authors
A. E. VoroninRussian Federation
Moscow, 117198
A. N. Pronichev
Russian Federation
Moscow, 117198
V. G. Nikitaev
Russian Federation
Moscow, 117198
M. A. Solomatin
Russian Federation
Moscow, 117198
T. P. Zanegina
Russian Federation
Moscow, 117198
I. V. Arkhangelskay
Russian Federation
Moscow, 117198
A. I. Petukhova
Russian Federation
Moscow, 117198
P. Yu. Bagnova
Russian Federation
Moscow, 117198
A. V. Soshnina
Russian Federation
Moscow, 117198
O. B. Tamrazova
Russian Federation
Moscow, 117198
V. Yu. Sergeev
Russian Federation
Moscow, 121359
Yu. Yu. Sergeev
Russian Federation
Moscow, 121359
References
1. Магомедова А.А., Евлоева Л.А. // Уральский медицинский журнал. 2020. № 12 (195). C. 116 −120. https://www.elibrary.ru/uhdbjn
2. Ларина В.Н., Гайдина Т.А., Дворников А.С., Назимкин К.Е. // Архивъ внутренней медицины. 2022. Т. 12 (2). С. 85 −92. https://doi.org/10.20514/2226-6704-2021-12-2-85-92.
3. Римская Е.Н., Щадько А.О., Аполлонова И.А. и др. // Оптика и спектроскопия. 2019. Т. 126 (5). С. 584−595. https://doi.org/10.21883/OS.2019.05.47657.6-19
4. Сергеев В.Ю., Сергеев Ю.Ю., Тамразова О.Б. и др. // Российский журнал кожных и венерических болезней. 2020. Т. 23 (5). С. 288−292. https://doi.org/10.17816/dv52794
5. Nikitaev V.G., Pronichev A.N., Kozyreva A.V., et al. // Biomed. Engin. 2019. V. 53 (4). P. 254−257. https://doi.org/10.1007/s10527-019-09920-1
6. Nikitaev V.G., Pronichev A.N., Lim A.O., et al. // Math. Models Comput. Simul. 2022. V. 14 (3). P. 411−418. https://doi.org/10.20948/mm-2021-10-06
7. Жучков М.В., Булиньска А.К., Киттлер Г. // Дерматология. Приложение к журналу Consilium Medicum. 2017. № 2. С. 5−13. https://www.elibrary.ru/zmjcsd.
8. Колесникова А.С., Бессонов Л.В., Лунева А.Д. и др. // Врач и информационные технологии. 2018. № 3. C. 61–72. https://www.elibrary.ru/xztyup.
Review
For citations:
Voronin A.E., Pronichev A.N., Nikitaev V.G., Solomatin M.A., Zanegina T.P., Arkhangelskay I.V., Petukhova A.I., Bagnova P.Yu., Soshnina A.V., Tamrazova O.B., Sergeev V.Yu., Sergeev Yu.Yu. Segmentation of Images of Skin Neoplasms Using the Active Contour Method. Nuclear Physics and Engineering. 2023;14(2):189-193. (In Russ.) https://doi.org/10.56304/S2079562922030563