Preview

Nuclear Physics and Engineering

Advanced search

Standard Theory of a Scintillation Spectrometer with a Single Photodetector

https://doi.org/10.56304/S207956292201033X

Abstract

The currently existing macroscopic theories of scintillation spectrometers with a single photodetector have a number of fundamental drawbacks. The drawbacks can be overcome by a correct microscopic description of the processes occurring when the energy of the primary particle is converted into an output signal of the scintillation spectrometer. The mathematical model formulated in this work is the basis for the standard theory of scintillation spectrometers with a single photodetector, which allows one to obtain expressions for arbitrary moments of the signal distribution function at the output of the scintillation spectrometer. It is shown that the developed standard theory of scintillation spectrometers with a single photodetector does not have the drawbacks of other theories of scintillation spectrometers. In particular, the contribution to the energy resolution associated with the light yield nonlinearity of the scintillator is considered in the developed standard theory.

About the Author

V. V. Samedov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
Russian Federation


References

1. <em>Breitenberger E.</em> // Progr. Nucl. Phys. 1955. V. 4. P. 56.

2. <em>Birks J.B.</em> The Theory and Practice of Scintillation Counting. 1967. London: Pergamon.

3. <em>Moszyński M. et al.</em> // Nucl. Instrum. Methods Phys. Res., Sect. A. 2016. V. 805. P. 25.

4. <em>Lecoq P. et al.</em> Inorganic Scintillators for Detector Systems. 2006. Berlin: Springer.

5. <em>Knoll G.F.</em> Radiation Detection and Measurement. 2000. New York: Wiley.

6. <em>Grupen C., Shwartz B.</em> Particle Detectors. 2008. New York: Cambridge Univ. Press.

7. <em>Payne S.A. et al.</em> // IEEE Trans. Nucl. Sci. 2009. V. 56. P. 2506.

8. <em>Payne S.A.</em> // IEEE Trans. Nucl. Sci. 2015. V. 62. P. 372.

9. <em>Bousselham A. et al.</em> // Nucl. Instrum. Methods Phys. Res., Sect. A. 2010. V. 620. P. 359.

10. <em>Bora V. et al.</em> // Nucl. Instrum. Methods Phys. Res., Sect. A. 2016. V. 805. P. 72.

11. <em>Samedov V.V.</em> // Nucl. Instrum. Methods Phys. Res., Sect. A. 2012. V. 691. P. 168.

12. <em>Samedov V.V.</em> // X-Ray Spectrom. 2019. V. 48. P. 597.

13. <em>Gektin A., Vasil’ev A.</em> // Radiat. Meas. 2019. V. 122. P. 108.

14. <em>Samedov V.V.</em> PhD Thesis. 1972. Moscow: Moscow Eng. Phys. Inst.

15. <em>Samedov V.V.</em> // Instrum. Exp. Tech. 1985. V. 28. P. 580.

16. <em>Samedov V.V.</em> // Meas. Tech. 1985. V. 28. P. 265.

17. <em>Samedov V.V.</em> // EPJ Web Conf. 2020. V. 225. P. 01007.

18. <em>Loudon R.</em> The Quantum Theory of Light. 2000. New York: Oxford University Press.


Review

For citations:


Samedov V.V. Standard Theory of a Scintillation Spectrometer with a Single Photodetector. Nuclear Physics and Engineering. 2022;13(2):118-126. (In Russ.) https://doi.org/10.56304/S207956292201033X

Views: 88


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)